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Abstract

Like scientists, children have a sharp sense of when and how
to seek evidence, but when it comes to generating causal in-
terventions, their performance often falls short of normative
information-theoretic metrics such as the expected information
gain (EIG). We looked at whether this deviation resulted from
mixing discriminatory strategies such as maximizing EIG with
confirmatory strategies such as the positive test strategy (PTS).
Thirty-nine 5- to -7-year-olds solved 6 puzzles where they had
one opportunity to intervene on a three-node causal system to
identify the correct structure from two possibilities. Children’s
intervention choices were better fit by a Bayesian model that
incorporated EIG and PTS compared to alternative models that
only considered a single strategy or selected interventions at
random. Our findings suggest that children’s intervention strat-
egy may be a combination of discrimination and confirmation.
Keywords: causal learning; interventions; self-directed learn-
ing; Bayesian modeling

Introduction
[I]t is the usual fate of mankind to get things done in some
boggling way first, and find out afterward how they could have
been done much more easily and perfectly.

— Charles S. Peirce (1882)

Fairy tales often depict swallows as bringers of spring.
Given the frequent co-occurrence of the two, no wonder our
ancestors suspected a causal link between them. Setting free a
flight of swallows, however, is unlikely to end winter—by fix-
ing the value of the variable “whether swallows are present”
to “yes” (do(Swallow = 1)), a method known as interven-
tions, we soon learn that swallows do not bring forth spring;
perhaps it is the warmth of spring that lures them back.

Interventions are a powerful tool for uncovering causal
structures, but not all are equally useful for distinguishing
among a set of alternatives. Of numerous models that quan-
tify the usefulness of interventions (Nelson, 2005), informa-
tion gain (IG) is currently most widely used (e.g., Bramley,
Lagnado, & Speekenbrink, 2014; Oaksford & Chater, 1994;
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). Ac-
cording to the IG model, good interventions make learners
feel less uncertain (uncertainty is usually measured by “av-
erage surprise”, or Shannon entropy, Shannon, 1948) about a
causal system: initially, one causal structure may seem just
as likely as the next, so guessing which one is correct is like
a shot in the dark; after an informative intervention, however,
we can use the resulting effect to sift the good from the bad.

The ability to use interventions to learn causal struc-
tures emerges early (e.g., Cook, Goodman, & Schulz, 2011;
Schulz, Gopnik, & Glymour, 2007) but is still limited in
childhood. For instance, when asked to find out whether
two gears were independent or connected, only half of the

4- and 5-year-olds generated the most useful evidence on
their own (Schulz et al., 2007, Experiment 3). Compared to
pairwise relationships between two variables, it is less well-
understood how children learn global structures of multiple
variables through interventions. In a recent study, McCor-
mack, Bramley, Frosch, Patrick, and Lagnado (2016) looked
at whether 5- to 8-year-olds were able to use interventions to
learn the structure of a three-node system. Each node A, B,
C represented a shape sticking out of a box lid, which could
be rotated by hand or by the other shapes via a hidden mech-
anism inside the box. For a given causal system, children
were shown three ways in which the mechanism in the box
might work (a common cause: B←A→B; two causal chains:
A→ B→C or A→C→ B) and were allowed at least 12 op-
portunities to intervene on this system to figure out which one
was the case. Chance levels of IG were established through
simulation of randomly selected interventions. Only 7- to
8-year-olds’ intervention quality was above chance for both
types of structures. By contrast, 5- to 6-year-olds’ interven-
tion quality was below chance for both; 6- to 7-year-olds’ was
above chance for causal chains but not for the common cause.

Consistent with “source preferences” found by Steyvers et
al. (2003), McCormack et al. (2016) noted that a considerable
proportion of children intervened on the root node A, which
could not reduce uncertainty since all shapes would rotate re-
gardless of the true structure. Coenen, Rehder, and Gureckis
(2015) suggested that this phenomenon may be driven by
the positive test strategy (PTS): instead of differentiating be-
tween alternatives, a PTS user focuses on one hypothesis
(e.g., A→ B→ C) at a time while ignoring everything else.
To check whether both links in the working hypothesis ex-
ist, the most efficient intervention is to activate A, which ex-
amines both links at the same time. More generally, a PTS
user favors nodes that can simultaneously test the largest pro-
portion of links. This strategy runs parallel to PTS in rule
learning where learners favor queries that produce affirmative
responses (e.g., “yes”) if the current hypothesis is true (Klay-
man & Ha, 1989; Wason, 1960). PTS is most useful when
evidence can falsify the current hypothesis, whereas positive
evidence could support just as many hypotheses as before the
intervention (although you may have more confidence in the
supported ones). PTS is efficient if causal connections are
sparse (Navarro & Perfors, 2011; Oaksford & Chater, 1994).
For instance, to see if pollen X causes allergy Y, you can
run tests on pollen X. In theory, you can also check whether
people without allergy Y have been exposed to pollen X—
however, since allergy Y is rare (P(Y ) < .5), you need to
check frequently; since pollen X is rare (P(X)< .5), you may
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well find nothing. While causal connections in McCormack
et al.’s (2016) study were not sparse, they often are in real life;
as a result, children may still use PTS even when it works less
well than discriminatory strategies such as IG maximization.

Combining strategies
Coenen et al. (2015) found that when choosing interventions,
adults might combine discriminatory (IG) and confirmatory
(PTS) strategies. In a series of experiments, they showed
participants two possible structures of a three- or four-node
causal system and asked them to identify the true structure
by using as few interventions as possible. Participants’ (first)
intervention choices were better fit by a Bayesian model that
incorporated IG and PTS when assigning values to potential
interventions compared to models that only considered either
IG or PTS, or assigned values indiscriminately.

The new modeling approach above provides a more pre-
cise characterization of children’s strategy use, which could
potentially explain why they often fail to generate informative
interventions. By contrast, other past studies that we know of
(e.g., Bramley et al., 2014; McCormack et al., 2016; Steyvers
et al., 2003) only quantified the degree to which participants’
performance deviated from the IG model but did not zero in
on where such deviation came from. As with Coenen et al.
(2015), we addressed this issue by entertaining the possibil-
ity that children combine IG and PTS to select interventions.
We focused on 5- to 7-year-olds because they did not reliably
use IG to select interventions in McCormack et al.’s (2016)
study. We adapted Coenen et al.’s (2015) adult task to make it
more accessible and engaging for children of this age range.
In one experiment, children solved puzzles where they had
one opportunity to intervene on a three-node causal system to
identify the correct structure among two possibilities. Inter-
vention choices were fit by two single-strategy models (PTS
or IG), a random model (all interventions were assigned a
value of 1), and a combined model (both PTS and IG).

Modeling strategies
Values of interventions Different strategies assign values
to interventions differently. Here we included the expected
information gain (EIG), the positive test strategy (PTS), the
random strategy, and the combined strategy (EIG and PTS).

1. Expected Information Gain (EIG) Learners begin with a set
of hypotheses about how a causal system may work. Each
hypothesis is formally represented as a causal Bayesian
network—a directed acyclic graph where nodes represent
causal variables and links represent causal relations (Pearl,
2000). Learners’ uncertainty about this causal system
g ∈ G (G is the space of possible graphs and g is each hy-
pothesis) is measured by its Shannon entropy H(G):

H(G) =−∑
g∈G

P(g)log2P(g). (1)

Observing the outcome o ∈ O of an intervention on a node

n ∈ N reduces the entropy to H(G|n,o). The reduction of
entropy is this intervention’s information gain IG(n,o):

IG(n,o) = H(G)−H(G|n,o). (2)

The IG model assumes that learners’ goal is to maximize
IG(n,o). However, because an intervention’s outcome is
unknown beforehand, its expected information gain (EIG)
(marginalized over all possible outcomes) is used instead:

EIG(n) = H(G)− ∑
o∈O

P(o|n)H(G|n,o). (3)

In Eq. (3), the conditional entropy H(G|n,o) is:

H(G|n,o) =−∑
g∈G

P(g|n,o)log2P(g|n,o). (4)

In Eq. (4), for each graph, the prior probability P(g) is
the same and the posterior probability P(g|n,o) is given by
Bayes’ rule, P(o|g,n)P(g)

∑P(o|g,n)P(g) . P(o|g,n) is an outcome’s likeli-
hood given a hypothesis and an intervention.

2. Positive Test Strategy (PTS)

According to the PTS model, learners aim to intervene on
the node n ∈ N that has the largest proportion of links1 (di-
rect or indirect), with each graph g ∈ G being considered:

PT S(n) = max
g

[
DescendantLinksn,g

TotalLinksg
]. (5)

3. Random strategy

According to the random model, the learner assigns the
same value (e.g., 1) to all possible interventions.

4. Combined strategy

According to the combined model, the learner assigns a
weighted mean of EIG (weight: θ) and PTS (weight: 1−θ)
scores to each intervention.

Linking values to interventions Ideal learners always in-
tervene on the node with the highest value V (n); actual learn-
ers do so probabilistically—their behavior can be captured by
the softmax choice rule (Luce, 1959):

P(n) =
exp(V (n)/τ)

∑
n∈N

exp(V (n)/τ)
, (6)

where τ is learners’ decision noise: when τ is 0, they be-
have ideally; when τ approaches +∞, they choose randomly.

The main interests of our study were to 1) examine which
model could best capture 5- to 7-year-olds’ intervention se-
lection and to 2) look for possible developmental changes.

1We tested two alternative PTS models where values are based
on the expectation or the total number of how many nodes can be
turned on. Neither model fit our data as well as the one we used.



Adaptations for the current study
We explored scenarios similar to those explored by Coenen et
al. (2015) with two key differences.

We set causal connections to be deterministic: intervening
on a parent node would always affect its children and no back-
ground causes existed. This was because children might have
difficulties understanding that a parent only had a probability
of (for instance) 0.8 to activate its children; incorporating this
information into causal reasoning could make it even harder.

We only selected three unique problems2 (A→ B→C vs.
B← A→C; A→ B→C vs. B→C; B→ A←C vs. C→ A).
To obtain more data, each child faced each problem twice
with the roles of A and B counterbalanced (A→ C→ B vs.
B← A→C; A→C→ B vs. C→ B; B→ A←C vs. B→ A).
There was only one informative intervention in each problem,
making it easier for us to distinguish children’s performance
from the chance level of EIG based on relatively sparse data
(there were only a total of 6 problems and children only inter-
vened once to solve each problem). Moreover, EIG and PTS
happened to have the least overlap3 in these problems, so our
models were better able to capture children’s strategy use.

Experiment
Methods
Participants Thirty-nine 5- to 7-year-olds (Mage = 79.8
months, range = 61.8–94.8 months, SD = 9.7 months; 18 fe-
males) were tested in a laboratory located at University of
California, Berkeley or in a local children’s museum.

Equipment and materials An interactive game was de-
veloped for this study (see Figure 1). Simple causal sys-
tems consisting of a yellow, a green, and a red light
bulb were programmed in Scratch (see all causal sys-
tems: https://scratch.mit.edu/users/BayesianBabies/projects/)
and presented on a laptop screen. A response board with three
buttons of corresponding colors was connected to the com-
puter via a circuit board to control the light bulbs. In the test
phase, possible structures of light bulbs were shown on cards.

Procedure Children first learned how to turn on light bulbs
using buttons on the response board. For each light bulb, the
experimenter turned it on and off and asked children to turn
it back on. In the end, the experimenter summarized the rule,
“You just need to click the button that has the same color!”

Next, children practiced describing four basic types of
causal structures (common cause: ← → ; common
effect: → ← ; causal chain: → → ; one link:
→ ) and observed outcomes of all three interventions in

2For three-node causal systems with one or two links, there are
18 unique structures: 3 common-cause structures, 3 common-effect
structures, 6 causal-chain structures, and 6 one-link structures, re-
sulting in a total of

(18
2
)

= 153 pairs of graphs. Because the node
names are arbitrary, simultaneously swapping nodes in both struc-
tures of a pair (e.g., swapping A and C in A→ B→ C vs. A→ B)
leads to an equivalent pair (C→ B→ A vs. C→ B). There are 27
unique pairs left after eliminating the redundant.

3Overlap could not be eliminated in any given pair.

Figure 1: The experiment setup.

(a) Puzzle 1 (b) Puzzle 2 (c) Puzzle 3

(d) Puzzle 4 (e) Puzzle 5 (f) Puzzle 6

Figure 2: 6 puzzles used in the experiment.

each structure. Specific structures used as examples during
practice were not included in the test. The trial order was
randomized for each child. All three light bulbs were pre-
sented simultaneously, along with red arrows denoting causal
relationships. On the first trial, the experimenter told chil-
dren, for instance, “These light bulbs (e.g., → ) have a
secret: some give light to others. See this arrow over here?
It means that the yellow light bulb gives light to the red light
bulb. That is, when yellow turns on, it turns on red, too!” To
ensure that children understood causal structures shown in the
pictures, they were asked to describe them in their own words
on the last three trials. The experimenter asked additional
questions if children 1) ignored the red arrows (e.g., Child,
“This picture tells us there are three light bulbs.” Experi-
menter, “Great! Can you tell me what this arrow tells us?”),
2) did not address causal relationships (e.g., Child, “This pic-
ture shows us an arrow pointing from yellow to red.” Exper-
imenter, “Good! What does it tell us?”), or 3) made factual
errors (e.g., Child, “This picture shows that red turns on yel-
low.” Experimenter, “Maybe it shows us yellow turns on red?
What do you think?”). After describing a picture, children
were invited to turn on each light bulb, “Now you can turn on
the light bulbs one by one and see what happens!”.

In the test, children solved six puzzles (see Figure 2) in
a random order. On each test trial, arrows were hidden away
and cards with two candidate causal structures were displayed
side by side; the relative positions were randomized. Children
were told, “These three light bulbs work in a special way.
They either work this way (pointing to one card) or this way
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(pointing to the other). One picture is correct about how they
work and the other one is wrong.” They were asked to find
out the true structure based on one intervention, “To solve this
puzzle, you can turn on one light bulb and see what happens.
From that, you can find out which picture shows us how these
three light bulbs really work! Which light bulb do you want
to turn on to help you?” After each intervention, children
identified the correct structure by putting a smiley face sticker
on it. Correct structures were randomly selected and feedback
was only provided in the end (to avoid discouragement).

Results
Accuracy We first looked at whether children could iden-
tify correct causal structures through interventions. The per-
centage of correct choices averaged across all children and
puzzles4 was 54% (SD = .22, MD = 50%), which was at
chance (50%), t(38) = 1.02, p = .31, Cohen’s d = .16. There
was no age difference, F(1,37) = .027, p = .87, R̄2 = .00.

Raw scores Before model fitting, we looked at the raw EIG
and PTS scores of children’s chosen interventions. The aver-
age EIG over all interventions was .39, which was not distin-
guishable from the chance level5 of EIG (.33), t(38) = 1.23,
p = .23, Cohen’s d = .20. The average PTS over all inter-
ventions was .74, which was above the chance level6 of PTS
(.55), t(38) = 5.21, p < .001, Cohen’s d = .83. Both the av-
erage EIG and the average PTS tended to increase with age,
F(1,37) = 3.63, p = .065, R̄2 = .065 and F(1,37) = 4.13, p =
.049, R̄2 = .076, respectively. Both effect sizes were small.

We categorized children by their main strategy and whether
they switched strategies7 (see Table 1). More children were
PTS users (N = 31) than EIG users (N = 6); two were unde-
cided. Over half (18/31) of the PTS users switched strategies
at least once while no EIG users switched from or to PTS.

Comparing models Of central interest to our study was the
comparison between four models of children’s strategy use.

We took a hierarchical Bayesian approach to modeling
children’s intervention choices. Single-strategy models (Fig-
ure 3a) assumed that children noisily maximized EIG or PTS,
or assigned a value of 1 to all interventions. A free parameter
τi captured each child’s decision noise, which was sampled
from a population-level gamma distribution with two hyper-
parameters α (shape) and β (rate). The combined model (Fig-
ure 3b) viewed children’s intervention strategy as a poten-
tial mix of of EIG maximization and PTS maximization. An
additional free parameter θi captured EIG’s weight in each
child’s evaluation of interventions, which was sampled from a

4Due to an equipment error, one child’s accuracy on one puzzle
was not recorded; this trial was excluded from subsequent analyses.

5As mentioned, only one in three interventions was informative.
6This was the average PTS over all interventions in all puzzles.
7We did so by subtracting each child’s PTS score in each puzzle

from their EIG score. If the sum of differences was positive or nega-
tive, a child was categorized as an EIG or a PTS user; if the sum was
0, a child was seen as undecided between strategies. If all non-zero
differences had the same sign (+ or -), a child was categorized as
single-strategy user and otherwise a combined-strategy user.

Figure 3: Hierarchal Bayesian models of single (left) and
combined (right) strategies. In each puzzle j, each child i
chose one node ni j to intervene on. Vj, EIG j, and PT S j
store the values of three possible interventions in each puzzle.
pi j stores probabilities of each child choosing each interven-
tion in each puzzle. τi and θi capture each child’s decision
noise and EIG weight. α and β are population-level hyper-
parameters that generate τi; µ and κ generate θi.

Table 1: Summary of strategy use and strategy switch.

Strategy Combined Single

EIG 0 6
PTS 18 13
Undecided 2 0

Table 2: Comparing four models of intervention strategies.

Model DIC τ θ

Random 523.36 6.02 –
EIG 504.14 6.64 –
PTS 465.61 5.50 –
Combined 431.76 5.11 .24
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Figure 4: (A) The best-fitting θ (MLE) for each child. (B)
The distribution of the hyper-parameter µ (the mean of θ).

population-level beta distribution with two hyper-parameters
µ (mean) and κ (standard deviation). Uninformative priors
were chosen for all hyper-parameters: α = .001, β = .001, µ∼
Beta(.5, .5), κ ∼ Gamma(.001, .001). Probabilities of possi-
ble interventions were determined by values of nodes as well
as τ in single-strategy models and θ and τ in the combined
model. Finally, interventions were sampled from a categori-



cal distribution of these probabilities.
We estimated parameter values from children’s interven-

tion choices using Markov chain Monte Carlo (MCMC) sam-
ples generated by the JAGS program8 (Plummer, 2003) and
used the deviance information criterion (DIC, Spiegelhalter
et al., 2002) for model comparison. Models that can better fit
data (smaller posterior mean of the deviance D̄) or are simpler
(smaller effective number of parameters pD) have lower DIC
(= D̄ + pD). A difference over 10 is considered substantial.

As seen in Table 2, PTS was the best-fitting single-strategy
model but the combined model outperformed all single-
strategy ones. Across 39 children, the average EIG weight θ

was .24 and the average noise τ was 5.11. Each child’s best-
fitting θ (Figure 4a) as uncorrelated with τ, r(37) = −.073,
p = .66. Figure 4b shows the distribution of the population-
level hyper-parameter µ that captured the mean of θ.

Strategy and accuracy The EIG weight of each child had
no effect on their overall accuracy, F(1,37) = 1.14, p = .29,
R̄2 = .0038. Getting down to the puzzle level, neither the
EIG score nor the PTS score of the chosen intervention pre-
dicted whether the correct structure was subsequently identi-
fied, χ2(1) = .23 and χ2(1) = .81, respectively.

Developmental changes The EIG weight did not change
with age, F(1,37) = .53, p = .47, R̄2 = .00, but the noise
decreased with age, F(1,37) = 10.59, p = .0024, R̄2 = .20.

Discussion
Our key finding is that 5- to 7-year-olds’ intervention strat-
egy is better described as a combination of discrimination and
confirmation than a single strategy or random behavior.

On aggregate, children’s intervention choices lie between
nodes that maximize EIG and and nodes that maximize PTS.
This mixture leans towards PTS: the EIG weight (.24) is much
lower than that of PTS (.76). Categorization based on raw
scores also suggests that more children were PTS users than
EIG users. The EIG weight remains the same from 5 to 7, but
the noise decreases with age, suggesting that older children
evaluated nodes similarly as younger children but were better
at maximizing values. Since only EIG is a reliable guide to
informative interventions, one may guess that PTS is random
interventions in disguise. However, this is unlikely because
the EIG weight is uncorrelated with noise. Rather, PTS may
be a genuine strategy and children’s heavy reliance on it may
partially explain their difficulties generating informative in-
terventions (McCormack et al., 2016; Schulz et al., 2007).

When it comes to identifying the correct structure, chil-
dren performed only at chance. Surprisingly, higher reliance
on EIG does not predict better structure learning. There may

8We ran MCMC for 100,000 iterations, discarding the first 1000
samples and drawing a sample every 10 iterations. To ensure that
samples came from a stationary distribution, we repeated this pro-
cess 30 times with different initial parameter values and checked
if the results from each sequence of samples, or chain, converged.
Gelman and Rubin’s diagnostic R̂ (Gelman & Rubin, 1992) of all pa-
rameters was smaller than 1.05, indicating successful convergence.

be a discrepancy between the ability to generate interventions
and the ability to learn from them. Similar results were found
in several past studies (e.g., McCormack et al., 2015; Schulz
et al., 2007). Given the sequential nature of interventions in
these studies, by the time of inferring the causal structure,
children might have forgotten the evidence. This explana-
tion is unlikely here since children only intervened once and
the outcome was present during the inference. However, un-
der the current “one-shot learning” situation, children faced
a new challenge: they had much less to draw on compared
to at least 12 interventions in McCormack et al. (2016) and 5
minutes’ free play in Schulz et al. (2007). In addition, we no-
ticed that children picked an answer very quickly after each
intervention. Perhaps given so little evidence and time, it is
even challenging to learn from informative interventions.

General Discussion

Like scientists, children have a sharp sense of when and how
to seek evidence (Cook et al., 2011; Schulz & Bonawitz,
2007), but when it comes to actual data generation such as
causal interventions, their performance often falls short of
normative information-theoretic metrics like the expected in-
formation gain (EIG) (McCormack et al., 2016; Schulz et al.,
2007). A growing body of work shows that adults’ (Bramley
et al., 2014) and children’s (McCormack et al., 2016) inter-
vention selection is neither random nor optimal. However,
these studies did not explain why and how that might be the
case. Inspired by Coenen et al. (2015), we explored the possi-
bility that children’s suboptimal intervention selection results
from combining discriminatory strategies with confirmatory
strategies like the positive test strategy (PTS). In our study, 39
5- to -7-year-olds solved 6 puzzles where they intervened on a
three-node causal system once in order to identify the correct
structure from two alternatives. Like adults, children’s inter-
vention choices were better fit by a Bayesian model incorpo-
rating EIG and PTS than models only considering one strat-
egy or choosing interventions randomly. In this combined
model, PTS was the main strategy that children relied on.

Granted, little do we know about how exactly children
combine different strategies. For instance, do they integrate
EIG and PTS to solve each puzzle or switch between them
from one puzzle to another? Our results hint at the latter—
PTS users often switched strategies but not EIG users, so per-
haps children who first used PTS found their strategy ineffec-
tive and tried to switched, whereas those who first used EIG
had no such need. If children integrate strategies, do they start
with one and then consider another, or simultaneously com-
pute and weight both? Future work is needed to answer these
mechanistic questions. However, before digging into mech-
anisms of intervention selection, we should “guarantee some
overall correctness or well-formedness of the computation”
(Anderson, 1990). Most past studies only compared human
behavior against an optimal benchmark; this combined model
may provide a more realistic and nuanced starting point.



Relation to past studies

Our findings seem at odds with myriad studies showing that
children are good causal learners (see Gopnik & Wellman,
2012, for a review). However, our study differs in several key
aspects. First, children choose their own interventions rather
than observing those generated by others. Second, children
learn the causal structure of multiple variables rather than
whether a certain variable has causal power. Lastly, children
are asked to identify global structures rather than being tested
on pairwise relations. To our knowledge, only one child study
(McCormack et al., 2016) has all three features and in that
study, 5- to 7-year-olds also did not reliably select informa-
tive interventions. Complex causal structures seem to pose
a real challenge for young learners, which can be a valuable
opportunity to study how adult-like causal learning develops.

Future directions

The current study opens up many future directions to explore.
For developmental psychologists, a crucial question is how

this combined strategy develops. Although the EIG weight
remains the same from 5 to 7 in our study, people’s interven-
tion strategy may change throughout lifetime. Do children
initially rely on one strategy and gradually incorporate oth-
ers? What do the starting and the end points look like? What
experiences may contribute to potential changes? To answer
these questions, we need to adapt our task and test a much
wider age range, such as from toddlers to adolescents.

We discussed one reason why children use seemingly sub-
optimal PTS—if you focus on one hypothesis at a time, you
should choose the node with the largest proportion of links
because it can test your hypothesis most efficiently. How-
ever, it is also possible that children simply enjoy turning on
as many light bulbs as possible. The current study cannot rule
out this motivation. In the future, we can set the default state
of light bulbs to “off”: if children prefer root nodes much less,
it could suggest that it is positive effects that they chase after.

Since causality is central to scientific and everyday think-
ing, we wish to help children select more informative inter-
ventions. Asking them to explain their intervention choices
might be one such way. Since explaining why can promote
comparison and abstraction (see Lombrozo, 2016, for a re-
view), explainers may be better able to compare outcomes
under different structures and after different interventions and
abstract away from solving specific puzzles that EIG often
works better. It may also be helpful to provide feedback after
each test trial and allow children to intervene more than once.

Causal interventions are among many ways to gather in-
formation, so are question asking (e.g., Nelson, 2005), explo-
ration (e.g., Cook et al., 2011), hypothesis testing (e.g., Oaks-
ford & Chater, 1994; Wason, 1960), etc.. In these domains,
inquiries generated by adults and children are also often bet-
ter than random but worse than optimal. We can take a similar
modeling approach, looking at whether some version of com-
bined strategies may play a role across a wide range of tasks.
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