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Abstract
On the road to a more fair and just world, we must recog-
nize ubiquitous disparities in our society, but awareness alone
is not enough: Observed disparities between groups often get
wrongly attributed to inherent traits (e.g., African Americans
are disproportionately arrested because they are more prone to
crime), creating a self-perpetuating feedback loop. As shown
in a past study (Meng & Xu, 2020), such reasoning can result
from the Naı̈ve Utility Calculus (NUC, Jara-Ettinger, Gweon,
Schulz, & Tenenbaum, 2016): If an agent knows a target trait’s
“hit rate” in every group and avoids unnecessary sampling, it
is rational to infer that groups sampled from more often have
higher hit rates. The previous study used non-social cate-
gories (robot chickens) as stimuli, which raises the question
of whether the results generalize to the social domain. In the
current study, we replicated past findings using novel social
groups (aliens): Overall, people were more likely to check
groups examined more often by the agent but when observed
hit rates did not support the agent’s sampling behavior, people
incorporated both information sources to infer group hit rates.
This work brought NUC-based models one step closer towards
tackling disparities in the real world consisted of social groups.
Keywords: social cognition; disparities; theory of mind;
Bayesian models of cognition

Introduction
Quaerendo invenietis (“Seek and ye shall find”).

— J. S. Bach, Canon No. 9

The arc of the moral universe may bend toward justice, but
not by the awareness of injustice alone. Seeing, for instance,
that Black men are 100 times more likely to get killed by the
police than Asian women over the life course (Edwards, Lee,
& Esposito, 2019), those in power may reinforce the status
quo, possibly out of fear that groups disproportionately pun-
ished by the criminal justice system are indeed more prone
to crime (Hetey & Eberhardt, 2014, 2018). Ironically, the
more we scrutinize these groups, the more crime we discover,
the more readily we justify our decisions, creating a feedback
loop that forever amplifies accidental differences, or worse,
deliberate biases (Ensign, Friedler, Neville, Scheidegger, &
Venkatasubramanian, 2017; Kearns & Roth, 2019).

So how can we break free from this vicious cycle? Hetey
and Eberhardt (2018) suggested that we offer historical con-
text for how disparities came to be, challenge stereotypes
associating certain groups with certain traits, and highlight
systemic forces behind disparities. While these measures are
important and long overdue, they are not the end-all and be-
all of the fight for social justice: Even without stereotypes

and biases, disparities may still get perpetuated by low-level
social cognitive processes. A recent study (Meng & Xu,
2020) examined how the “Naı̈ve Utility Calculus” (NUC,
Jara-Ettinger et al., 2016) alone can reproduce observed dis-
parities: If we believe an agent (e.g., a police officer) knows
the “hit rate” of a target trait (e.g., committing a crime) in
each group and samples group members to check in a cost-
efficient manner, we should infer that groups from which
the agent sampled more often have higher hit rates; given
the chance, we should also sample more from these groups.
This is worrisome because we end up reproducing dispari-
ties in the agent’s sampling behavior without prior stereo-
types against any groups. The authors offered a solution,
which was to show people what proportion out of group mem-
bers checked by the agent actually had the target trait. They
found that participants considered both sample hit rates and
the agent’s check rates when making inferences about groups:
Groups that were checked often but had low sample hit rates
or those rarely checked but had high sample hit rates were
both thought to have moderate population hit rates. A key so-
cial implication of these findings is that, when exposing racial
disparities in policing, we need to show both the number of
police searches in different groups as well as the outcomes.

Social groups vs. non-social categories
While Meng and Xu (2020) attempted to examine dispari-
ties in society, the agent in their study sampled from robot
chickens1 rather than social groups. They used non-social
categories as stimuli to prevent people from potentially bring-
ing in existing stereotypes about actual social groups but
this choice limits how well their findings generalize to social
groups. It may well be the case that people reason differently
about social groups and non-social categories.

One possibility is that social groups are considered more
variable than non-social categories. For instance, even young
children have strong intuitions that agents, not inanimate ob-
jects, can cause events to occur probabilistically—the latter

1In Meng and Xu’s (2020) cover story, robot chickens lay
eggs that may or may not contain a golden ticket and players
can choose between buying an egg or letting it go. Participants
watched a knowledgeable, utility-maximizing player interact with
each chicken and were asked to infer the chicken’s reward rate and
decide whether to buy an egg from it. The game structure mirrored
police encounters (player↔ officer, chicken↔ group, egg↔ group
member, reward↔ crime).
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tend to work as deterministic causes (Schulz & Sommerville,
2006; Wu, Muentener, & Schulz, 2016). In a similar vein,
people may believe that the mental process behind crime is
more subject to change than whatever mechanical process
that controls reward rates in robot chickens. If a group of peo-
ple are more unpredictable than a collection of robots, then
sample hit rates may not generalize so well to populations.

However, one can also make a case for the opposite. Social
essentialism (Rhodes & Moty, 2020) may lead us to think
members of a meaningful social group share an “essence”,
which cannot be said about eggs that merely share the space
inside the same robot chicken. In this case, sample hit rates in
essentialized social groups should generalize better to popu-
lations than those in non-essentialized non-social categories.

A final possibility is that, despite potential differences be-
tween social groups and non-social categories, the same in-
ferential process underlies how we infer population hit rates
from an agent’s sampling behavior and sample hit rates.

Goals of current research
The primary goal of the current research is to examine
whether findings in Meng and Xu (2020) generalize to so-
cial groups. If we find no major domain differences, it brings
NUC-based models one step closer towards explaining and
tackling real-world disparities. If the NUC does not capture
people’s hit rate inferences in social groups, then future stud-
ies are needed to find formal accounts in the social domain.

Apart from the nature of the groups, several aspects in
Meng and Xu (2020) can also be made more true to life.
For instance, in the robot chicken game, the trait that the
agent was looking for was positive (i.e., containing a reward)
whereas in police encounters, the target trait is most definitely
negative (e.g., committing a crime). A plethora of research
suggests that people tend to weigh negative outcomes more
heavily than positive ones (e.g., Baumeister, Bratslavsky,
Finkenauer, & Vohs, 2001; Fazio, Eiser, & Shook, 2004). So
if letting a criminal roam free is more consequential than win-
ning a reward in a game, an agent should adopt a lower thresh-
old for when to check in the former case—as a result, the
same observed check rate would imply a lower population hit
rate. To match outcome valence in police encounters and sim-
ilarly high-stake scenarios, we used negative outcomes in the
current study. Another major concern about Meng and Xu’s
(2020) study is that there were as as many “critical trials” in
which sample hit rates contradicted the agent’s check rates as
there were “control trials” in which the two rates in agree-
ment. Upon seeing so much counterevidence, people may no
longer trust the agent, which breaks the core assumptions of
the NUC about the agent’s knowledge and efficiency, making
it tricky, if not impossible, to infer population hit rates from
the agent’s sampling behavior. To protect the agent’s “repu-
tation’, our study included more control than critical trials.

Overview of experiment
To achieve the aforementioned goals, we created a “Gem Pa-
trol” game, which was structurally similar to the “Golden

Figure 1: The “Gem Patrol” game: In each trial, a group of
6 aliens from the same planet (e.g., Aera) went through bor-
der security before leaving planet Obos. Some may attempt
to leave with stolen gems, which can be detected by a special
machine. Border patrol officer Alex knows the theft rate of
aliens from each planet and only scans visitors if necessary.
In the “Check Rate Only” condition, participants saw how
many visitors Alex scanned but not the results. In the “Check
+ Hit Rates” condition, participants also saw how many stole
a gem out of those scanned. At the end of each trial, partici-
pants were asked to infer the theft rate of all aliens on a planet
and decide whether to scan a new visitor from there.

Ticket” game in Meng and Xu’s (2020) study. Our game is
set on the planet Obos that produces a rare and precious gem.
Aliens from nearby planets often visit Obos to buy gems,
some of whom attempt to leave without paying. Unpaid gems
emit a signal that can be detected by a special machine, which
runs on expensive reagents and can be slow, making scan-
ning costly. Border patrol officers decide whether to scan
each visitor or let them go directly. Alex is said to be the
best officer because they know the “theft rate” of aliens from
each planet and only scan visitors if necessary. Participants
watched Alex interact with visitors from a series of planets.
After each planet, they were asked to infer the theft rate of all
aliens on that planet and decide whether to scan a new visi-
tor from there. Figure 1 illustrates an example trial. In the
“Check Rate Only” condition, scan results were never shown
to participants so they could only infer theft rates based on
Alex’s check rates. In the “Check + Hit Rates” condition,
participants got to see how many visitors actually stole a gem.

Computational Modeling
Given data in a sample, how should people infer the theft rate,
or more generally, the hit rate of the population? To answer
this question, we adopted computational models in Meng and
Xu (2020), which are shown graphically in Figure 2.

NUC-based models
One class of models are based on the NUC (Jara-Ettinger et
al., 2016), which assumes the agent Alex maximizes expected
utilities when deciding whether to scan a visitor. This as-
sumption creates a link between Alex’s check rate µ of aliens



Figure 2: Computational models for inferring population hit
rates. In Naı̈ve Utility Calculus (NUC) models, the agent
Alex’s check rate µ for aliens from a given planet is linked
to their population hit rate θ via a logistic function, whose
intercept β0 and slope β1 are estimated from population hit
rates inferred by participants and their scanning decisions. µ
is inferred from the number of visitors Alex scanned (S) out
of the total number of visitors they encountered (P). In the
“Check Rate Only” condition, θ can only be inferred from
µ (“Check Rate Only” model). In the “Check + Hit Rates”
condition, θ can also be simultaneously inferred from µ and
the number of gem thieves (H) out of P (“Check + Hit Rates”
model). The non-NUC “Hit Rate Only” model ignores µ and
infers population hit rates solely from sample hit rates.

from a given planet and the population hit rate θ on that
planet. If each scan costs c and catching a gem thief returns a
reward r, then the expected utility of scanning a visitor is:

E[U(scan)] = rθ− c. (1)

E[U(scan)] is then connected to µ via a logistic function:

µ =
1

1+ e−E[U(scan)]/τ
, (2)

where the temperature parameter τ captures Alex’s decision
noise: Under extremely low temperatures (τ→ 0), Alex will
scan a visitor as long as E[U(scan)] > 0; when temperatures
are extremely high (τ→∞), Alex randomly chooses between
whether or not to scan. The logistic function is a special case
of the softmax function (under binary choices), which is com-
monly used to convert unbounded action values into action
probabilities bound by 0 and 1 (Sutton & Barto, 1998).

By plugging Equation 1 into Equation 2, we can rewrite
the original logistic function as follows:

µ =
1

1+ e−(β0+β1θ)
, (3)

where the slope β1 is r/τ and the intercept β0 is −c/τ. Both
parameters can be empirically estimated from participants’
hit rate inferences (“Out of N random new visitors from this
planet, how many may be thieves?”) and their scanning deci-
sions (“Do you want to scan a visitor from there?”). Estimates
of β0 and β1 can be plugged back in Equation 3 to infer θ from
µ; µ itself is inferred from how many visitors Alex scanned,
S, out of P visitors from a given planet—S∼ Binomial(µ,P).

In the “Check Rate Only” condition, the “Check Rate
Only” model is the only one for population hit rate inference.
In the “Check + Hit Rates” condition, learners can also take
account of sample hit rate information, simultaneously infer-
ring θ from µ as well as the number of gem thieves, H, out
of S visitors that Alex scanned—H ∼ Binomial(θ,S). Such
an inferential process is captured by the “Check + Hit Rates”
model. Alternatively, learners may ignore hit rate information
and still rely on the “Check Rate Only” model like before.

Non-NUC model
Both the “Check Rate Only” and the “Check + Hit Rates”
models hinge on the agent’s utility maximization. However,
learners may turn a blind eye to the agent’s sampling behavior
and infer population hit rates solely based on sample hit rates.
This type of learning is captured by the non-NUC “Hit Rate
Only” model, which infers θ from the number of gem thieves,
H, out of S visitors Alex scanned—H ∼ Binomial(θ,S).

Experiment
Methods
Participants We recruited 145 participants living in the
United States from Amazon Mechanical Turk. Each partici-
pant gave informed consent before participating and was paid
$2.5 for about 15-20 minutes of their time. Sixty-three2 were
excluded from analysis for failing to answer all comprehen-
sion check questions correctly. Among the remaining 82, 46
(mean age = 34.28 years, SD = 9.5) were in the “Check Rate
Only” condition and 36 (mean age = 34.31 years, SD = 8.2)
were in the “Check + Hit Rates” condition.

Design Table 1 summarizes the trial content. In the “Check
+ Hit Rates” condition, there were 6 critical trials where sam-
ple hit rates contradicted Alex’s check rates and 10 control
trials where sample hit rates and check rates were agreed with
one another (both high, low, or moderate). In all trials, the to-
tal number of visitors Alex encountered was fixed to be 6. In
the “Check Rate Only” condition, participants only saw how
many visitors Alex scanned in each trial but not how many
of them stole a gem. Participants were randomly assigned to
one of the two conditions and the trial order was randomized
for each person.

2The high attrition rate (43.4%) may be a result of the COVID-19
pandemic: After the imposition of sheltering in place and an influx
of new workers, average workers in the Amazon Mechanical Turk
pool were less attentive than before (Arechar & Rand, 2020). To
address the concern that the sample here was biased after exclusion,
we replicated this experiment as part of a follow-up study on Prolific
and found similar results at a much lower attrition rate (12.0%).

https://www.prolific.co/


Table 1: Summary of trial content. The total number of visi-
tors Alex encountered was always 6 in all trials. The number
of gem thieves was only revealed in the “Check + Hit Rates”
condition but not in the “Check Rate Only” condition.

trial type # scanned # thieves

critical

6 1
6 0
5 1
5 0
2 2
1 1

control

6 6
6 5
5 5
5 4
4 3
4 2
3 2
3 1
2 0
1 0

Procedure To begin, participants watched a short video in-
troducing the “Gem Patrol” game as previously described and
were tested on the utility structure of the game (costs, re-
wards), what makes Alex the best border patrol officer (that
they know the theft rate of aliens from each planet and maxi-
mize expected utilities of scanning), and randomness in small
samples (that 6 visitors may not represent aliens on an en-
tire planet). Only those who answered all the comprehension
check questions correctly were allowed to continue.

Each trial began with a picture of 6 aliens from one planet
lining up to pass border security. Those from each planet had
unique body colors. The next page depicted how many visi-
tors Alex scanned or let pass, which was the only information
available in the “Check Rate Only” condition. In the “Check
+ Hit Rates” condition, it was also revealed how many stole
a gem out of those scanned. In both conditions, participants
answered two questions at the end of each trial. The first
was that, out of 6 random new visitors from a given planet,
how many might be gem thieves. This measured participant’s
inferences of population hit rates. The second question was
whether they wanted to scan a new visitor from that planet,
the answers to which were used to estimate free parameters
β0 and β1 in NUC-based models.

Results
Did people copy Alex’s sampling behavior? As shown in
Figure 3 (left), overall, people followed Alex’s footsteps: In
both conditions across all 16 trials, the higher the proportion
of visitors Alex scanned out of the total from a given planet,
the more likely participants would choose to scan a new vis-
itor from there. To test this observation, we fit two general-

Figure 3: Reproduction of disparities: The proportion of par-
ticipants deciding to scan a new visitor as a function of how
many visitors Alex scanned in all trials (left) and critical trials
(right). (Error bars indicate the 95% confidence intervals.)

Figure 4: Population hit rates inferred by people vs. mod-
els: In the “Check Rate Only” condition (upper), the “Check
Rate Only” model is the only hit rate inference model. In
the “Check + Hit Rates” condition (lower), the “Check +
Hit Rates” model takes account of both check and hit rates
whereas the other two models rely on one of the two. (Solid
black bars indicate the 95% confidence intervals in human in-
ferences. Dashed gray bars indicate the 95% highest density
intervals of posterior distributions in Bayesian models.)



ized linear mixed models (GLMMs) with data from each of
the two conditions using the Python package Pymer4 (Jolly,
2018): Participants’ scanning decisions (1 = scan; 0 = let
pass) were the outcome variable and the number of visitors
Alex scanned (out of 6) was the fixed effect; this model has
random intercepts and slopes for participants and trials3. As
expected, the fixed effect was significant in the “Check Rate
Only” condition: With each additional visitor Alex scanned,
the odds ratio for participants scanning a visitor increased by
2.19, which was significantly higher than chance, Wald’s χ2

= 14.98, p = .00011. This was also true in “Check + Hit
Rates” condition where sample hit rates contradicted Alex’s
check rates in several trials: With each additional visitor Alex
scanned, the odds ratio for participants scanning a visitor in-
creased by 1.60, which was significantly higher than chance,
Wald’s χ2 = 5.12, p = .023. These results showed that, in
general, participants copied Alex’s sampling behavior, even
in the face of occasional contradictory information.

However, on the 6 critical trials where sample hit rates
were inconsistent with Alex’s check rates, did participants
still copy Alex blindly? According to Figure 3 (right), this
did not seem like the case. To test this new observation, we
fit another GLMM with critical-trial data in the “Check + Hit
Rates” condition. The fixed effect was no longer significant:
With each additional visitor Alex scanned, the odds ratio for
participants scanning a visitor decreased by .03, which was
not distinguishable from chance, Wald’s χ2 = .17, p = .68.

How did people infer population hit rates? As with Meng
and Xu (2020), a key assumption behind this work is that peo-
ple’s scanning decisions are driven by inferred population hit
rates. Figure 2 illustrated three different inferential processes,
each of which was implemented by PyMC3 (Salvatier, Wiecki,
& Fonnesbeck, 2016), a Bayesian modeling library in Python.
For NUC-based models (“Check Rate Only” and “Check +
Hit Rates”), we estimated4 parameter values of β0 and β1 in
Equation 2 using people’s inferred hit rates and scanning de-
cisions. The estimates were β0 =−1.98 and β1 = 4.67 in the
“Check Rate Only” condition and β0 =−2.87 and β1 = 9.48
in the “Check + Hit Rates” condition, respectively. The non-
NUC model (“Hit Rate Only”) has no free parameters.

In all three models, population hit rates are derived from
first principles rather than inferred from human data, so
model comparison metrics such as log-likelihood, AIC, BIC,
etc. do not apply here. To compare our models, we can ex-
amine how well each model’s predictions align with human
inferences by looking at Pearson’s r and root-mean-square
error (RMSE). As shown in Figure 4 (upper), in the “Check
Rate Only” condition, population hit rates inferred by peo-
ple were qualitatively similar to predictions of the “Check

3The formula of all GLMMs used in this paper is scan ∼
n checked + (1 | participant) + (1 | trial).

4Meng and Xu (2020) obtained maximum a posteriori (MAP)
estimates of β0 and β1 before feeding them to NUC models. Here
the choice model is built into NUC models so posterior distributions
of parameter values, not MAP estimates, are used to infer hit rates.

Rate Only” model. The two were strongly correlated, Pear-
son’s r = .55, p < .001. In the “Check + Hit Rates” condi-
tion, all model inferences correlated with human inferences:
The “Check + Hit Rates” model the most strongly, Pear-
son’s r = .66, the “Hit Rate Only” model the least so, Pear-
son’s r = .41, and the “Check Rate Only” model in between,
Pearson’s r = .58. We can also use RMSE to measure how
much each model’s predictions deviated from human infer-
ences; lower values suggest less deviation. In this regard, the
“Check + Hit Rates” model was the closest to humans among
the three, RMSE = .23, the “Hit Rate Only” model the fur-
thest, RMSE = .29, and the “Check Rate Only” model once
again in between, RMSE = .26. According to both metrics,
the “Check + Hit Rates” model best captured human infer-
ences, as shown in Figure 4 (lower). Upon a closer look,
the “Check Rate Only” model overestimated population hit
rates when Alex scanned a large proportion of visitors, even
though sample hit rates were very low. The “Hit Rate Only”
model made the opposite mistakes, overestimating population
hit rates when sample hit rates were high, even though Alex
scanned few visitors. By comparison, like people, the “Check
+ Hit Rates” model inferred moderate population hit rates to
reconcile conflicting check rates and hit rates in the samples.

Discussion
The current study replicated Meng and Xu’s (2020) findings
in the social domain. First of all, if a knowledgeable, utility-
maximizing agent frequently sampled members from a social
group to check at a cost, participants also tended to check a
new member from this group. This pattern was found in both
the “Check Rate Only” and the “Check + Hit Rates” condi-
tions across all trials, suggesting that people generally trusted
the agent and reproduced their sampling behavior, despite oc-
casionally receiving contradictory information (i.e., sample
hit rates were low in groups that the agent checked often but
high in groups that the agent did not check much). Impor-
tantly, however, on critical trials where sample hit rates de-
viated from the agent’s check rates, people no longer copied
the agent’s behavior. This finding suggested that providing
information on sample hit rates may be an effective way to
curb the reproduction of disparities in the social domain.

We argue that people’s sampling decisions are informed
by their inferences about population hit rates in different so-
cial groups. To examine the underlying inferential process,
we implemented three Bayesian models learning from differ-
ent sources of information (“Check Rate Only”, “Hit Rate
Only”, and “Check + Hit Rates”) and compared their pre-
dictions with people’s hit rate inferences. Among these, the
“Check + Hit Rates” model resembled humans the most and
captured major patterns in our participants’ inferences, sug-
gesting that people may combine both sample hit rates and
the agent’s check rates when inferring population hit rates.

General Discussion
Disparities between different demographical groups are
deeply rooted in all aspects of our society, from education,



employment to public health, criminal justice, just to name
a few. How we interpret evidence of disparities is like the
Rorschach test: Some attribute observed disparities to indi-
vidual or systemic biases and some to traits inherent to the
groups. The latter impedes progress if people believe certain
groups are to blame when historical data are distorted by self-
fulfilling prophecies. A recent study (Meng & Xu, 2020) pro-
vided a formal account to explain why we may attribute dis-
parities to inherent group traits and offered a potential solu-
tion. The explanation was based on the Naı̈ve Utility Calculus
(NUC, Jara-Ettinger et al., 2016): If an agent knows the hit
rate of a target trait in different groups and avoids sampling
(e.g., hiring, arresting, paroling) group members unnecessar-
ily, then it is rational to infer that groups sampled from more
often are more likely to possess that trait. The solution was to
show people the hit rates in the samples so they could com-
bine this new information with the agent’s sampling behavior
to adjust inferences about true trait prevalence in groups.

Critically, however, the previous study stripped away the
social context of groups that the agent sampled from, using
robot chickens so that participants could not rely on stereo-
types they might have about actual groups. To see whether
past results could generalize to the social domain, we de-
signed a new study in which the agent sampled from novel
social groups (e.g., aliens from different planets), thereby pre-
serving the social nature of groups while keeping away exist-
ing stereotypes. We replicated Meng and Xu’s (2020) find-
ings that, overall, people tended to copy a knowledgeable,
utility-maximizing agent’s sampling behavior but not when
sample hit rates contradicted the agent’s check rates. In the
latter case, participants relied on both the sample hit rates and
the agent’s check rates to infer groups’ hit rates and decided
whether to check a new group member accordingly. The cur-
rent results brought NUC-based explanations and solutions
closer towards the real world consisted of social groups.

Future directions
From alien planets to the world we live in, there is a long way
to go. Ultimately, we wish to understand why it is that aware-
ness of disparities can sometimes lead to future disparities
and, most importantly, find ways to stop this vicious cycle of
injustice. There are many directions in which we can go.

First of all, the current NUC models operate on the premise
that the agent is always knowledgeable, cost-efficient, and
well-intentioned, which often cannot be further from the
truth, such as when former police officer Derek Chauvin suf-
focated George Floyd to death, whose only crime was using
a 20-dollar counterfeit bill at a grocery store. Challenging
people’s blind trust in the agent is potentially another effec-
tive way to stop the reproduction of disparities. To this end,
we need models that jointly update how learners think about
groups and how much they still trust the agent after receiving
evidence contradicting the agent’s knowledge and efficiency.

Another way to make NUC models more realistic is to in-
corporate uncertainty into the choice model. That is, if some
groups are rarely sampled from, we should know little about

their true hit rates; as such, the expected utility of checking is
highly uncertain and we should probably discount this infor-
mation when making critical decisions (e.g., Li & Ma, 2020).

Moreover, we plan on using actual social groups in follow-
up studies. The merit of using novel social groups is that we
can steer away from people’s existing stereotypes; however,
it is real social groups that we care about—How will people
think and act when new statistical information clashes with
their prior social knowledge? Do they still rely on the same
NUC to draw or update inferences about groups? Or, does the
answer depend on what kind of prior knowledge they have
and other social factors (e.g., political positions, demograph-
ics)? These are important questions to investigate next.

Last but not least, we hope to examine the developmental
origin of the current results: Do children also reproduce dis-
parities that they see without prior biases? Does the NUC also
underlie their decisions and inferences about social groups?
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