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Abstract

A defining aspect of being human is an ability to reason about the world by generating
and adapting ideas and hypotheses. Here we explore how this ability develops by
comparing children’s and adults’ active search and explicit hypothesis generation patterns
in a task that mimics the open-ended process of scientific induction. In our experiment, 54
children (aged 8.97± 1.11) and 50 adults performed inductive inferences about a series of
causal rules through active testing. Children were more elaborate in their testing behavior
and generated substantially more complex guesses about the hidden rules. We take a
‘computational constructivist’ perspective to explaining these patterns, arguing that these
inferences are driven by a combination of thinking (generating and modifying symbolic
concepts) and exploring (discovering and investigating patterns in the physical world). We
show how this framework and rich new dataset speak to questions about developmental
differences in hypothesis generation, active learning and inductive generalization. In
particular, we find children’s learning is driven by less fine-tuned construction mechanisms
than adults’, resulting in a greater diversity of ideas but less reliable discovery of simple
explanations.
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Active inductive inference in children and adults: A constructivist perspective

“We think we understand the rules when we become adults but what we really
experience is a narrowing of the imagination.” –— David Lynch

A central question in the study of both human development and reasoning is how1

learners come up with the ideas and hypotheses they use to explain the world around2

them. Children excel at forming new categories, concepts, and causal theories (Carey,3

2009) and by maturity, this coalesces into a capacity for intelligent thought characterized4

by its domain generality and occasional moments of insight and innovation. Constructivism5

is an influential perspective in developmental psychology (Carey, 2009; Piaget, 2013; Xu,6

2019) and philosophy of science (Fedyk & Xu, 2018; Phillips, 1995; Quine, 1969) that7

posits learners actively construct new ideas through a mixture of thinking—recombining8

and modifying ideas—and play—exploring and discovering patterns in the world (Bruner,9

Jolly, & Sylva, 1976; Piaget & Valsiner, 1930; Xu, 2019). While the tenets and promise of10

constructivist accounts are appealing, it has historically lacked the formalization needed to11

distinguish it from alternative accounts of learning, limiting its testable predictions or12

detailed insights into cognition. We draw on recent methodological advances to formalize13

key aspects of constructivism and use these to analyze children and adults’ behavior in an14

open-ended inductive learning task. We show that a virtue of the constructivist account is15

that it captures the wide range of ideas and testing behaviors we observe, particularly in16

children. We use our account to examine developmental differences in hypothesis17

generation and active learning. To foreshadow, we show children’s hypothesis generation18

and active learning are driven by less fine-tuned construction mechanisms than adults’,19

resulting in a greater diversity of ideas but less reliable discovery of simple explanations20

and less systematic coverage of the data space.21

Concept learning22

Classic work in experimental psychology suggests symbol manipulation is required23

for humanlike reasoning and problem solving (Bruner, Goodnow, & Austin, 1956;24

Johnson-Laird, 1983; Wason, 1968). However, classic symbolic accounts struggled to25

explain how discrete representations could be learned or effectively applied to reasoning26

under uncertainty (Oaksford & Chater, 2007; Posner & Keele, 1968). Meanwhile, statistical27

accounts of concept learning have flourished by treating concepts as driven by “family28

resemblance” within a feature space—for instance, centered around a prototypical example29

or set of exemplars (Kruschke, 1992; Love, Medin, & Gureckis, 2004; Medin & Schaffer,30

1978; Shepard & Chang, 1963). Such accounts help explain how people assign category31

membership fuzzily, and generalize effectively to novel stimuli (Shepard, 1987) but lack a32
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core representation capable of capturing how people construct conceptual novelty33

(Komatsu, 1992).34

Bayesian approaches have also played a major role in study of concept learning,35

providing a principled way of modeling probabilistic inference over both sub-symbolic and36

symbolic hypothesis spaces (Howson & Urbach, 2006). On the symbolic side this includes37

inferences about particular causal structures (Bramley, Lagnado, & Speekenbrink, 2015;38

Coenen, Rehder, & Gureckis, 2015; Gopnik et al., 2004; Steyvers, Tenenbaum,39

Wagenmakers, & Blum, 2003) as well as more general causal theories (Goodman, Ullman,40

& Tenenbaum, 2011; Griffiths & Tenenbaum, 2009; Kemp & Tenenbaum, 2009; Lucas &41

Griffiths, 2010). Alongside Bayesian analyses, information theory has also featured42

frequently as a metric of idealized evidence acquisition (Gureckis & Markant, 2012),43

including choice of interventions and experiments that reveal causal structure (Bramley,44

Dayan, Griffiths, & Lagnado, 2017; Bramley et al., 2015; Coenen et al., 2015; Steyvers et45

al., 2003). However, since idealized Bayesian and information theoretic accounts describe46

learning within a predefined hypothesis space, they do not directly explain how a learner47

explores or generates possibilities within an infinite latent space. That is, probabilistic48

accounts of induction on are generally cast at Marr’s computational level (Marr, 1982),49

showing people behave roughly as if they consider and average exhaustively over what is50

really an unbounded space of possible concepts. Thus, while these accounts provide a51

jumping off point for rational analysis of cognition, we should take their limitations52

seriously when seeking to reverse engineer humanlike inductive inference (Simon, 2013;53

Van Rooij, Blokpoel, Kwisthout, & Wareham, 2019).54

The goal of this paper is to examine children’s and adults’ inductive learning in a55

rich open-ended task where the space of potential hypotheses and behaviors is effectively56

unbounded. In doing this, we will treat constructivism as a form of rational process57

framework (Lieder & Griffiths, 2020), capturing how people are shaped by Bayesian and58

information-theoretic norms but also why they diverge from and fall short of them outside59

of constrained scenarios. To do this, we focus on recent work in cognitive science that has60

attempted to marry symbolic and statistical perspectives. This work characterizes61

computational principles driving both human development and intelligence as resting on a62

capacity to flexibly generate, adapt, combine and re-purpose symbolic representations63

when learning and reasoning, but crucially to do so in ways that approximate probabilistic64

principles of inference under uncertainty (Bramley, Dayan, et al., 2017; Goodman,65

Tenenbaum, Feldman, & Griffiths, 2008; Piantadosi, 2021; Piantadosi, Tenenbaum, &66

Goodman, 2016).67
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Constructivism68

Fundamentally, we take the constructivist account to depart from69

computational-level Bayesian accounts because it presumes representational70

incompleteness, and consequently stochasticity and path dependence in a given individual’s71

learning trajectory. By this, we mean that the constructivist learner has not, and normally72

could not, consider and weigh all the possibilities in play when learning. Instead, they73

must have some mechanism for generating and comparing finite numbers of discrete74

possibilities (Sanborn & Chater, 2016; Stewart, Chater, & Brown, 2006). Eponymously, the75

construction mechanism needs to be capable of recursive construction: composing and76

recomposing symbolic elements so as to achieve the systemtaticity and productivity77

required for a finite system to cover an infinite space of ideas (Piantadosi & Jacobs, 2016).78

In this way, constructivist views treat algorithmic-level cognition as necessarily symbolic79

and at least somewhat language-like (Fodor, 1975) in its ability to make “infinite use of80

finite means” (von Humboldt, 1863/1988).81

For example, a constructivist learner might stochastically combine elements from an82

underlying concept grammar to produce new ideas that can be tested against evidence.83

Alternatively, they might use their grammar to describe patterns in evidence or to adapt a84

previous hypotheses to fit some new evidence (Bonawitz, Denison, Gopnik, & Griffiths,85

2014; Lewis, Perez, & Tenenbaum, 2014; Nosofsky & Palmeri, 1998; Nosofsky, Palmeri, &86

McKinley, 1994). Outside of narrow experimental settings, this modal incompleteness87

seems completely normal. A simple illustration is the gap between ease of evaluation versus88

generation of hypotheses (Gettys & Fisher, 1979). We can typically generate fewer89

explanations on the fly—i.e., reasons why our car won’t start—than we would endorse if a90

list was presented to us. We would likely come up with more as we looked under the hood91

than we would sat in the car thinking. Inference about any area of active scientific inquiry,92

like that reported in this journal, typically involve an enormous latent space of potential93

explanatory theories only a fraction of which have ever been articulated or tested and94

many of which were discovered only serendipitously (Shackle, 2015). It is generally95

accepted that the ground truth is unlikely to be among the set of theories already on the96

table (Box, 1976) and that challenging results are as likely to lead to theory modification97

as complete abandonment (Lakatos, 1976).98

The constructivist perspective thus departs from a Bayesian analysis by emphasizing99

that induction is as much about constructing candidate possibilities, as optimizing within a100

set of candidates. This reframing demystifies a number of behavioral patterns that look101

like biases from the computational-level perspective. These include anchoring, order102

effects, probability matching and confirmation bias. For example, Anchoring is a natural103
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consequence of generating new hypotheses by making local adjustments to an earlier104

hypothesis or from a salient starting point such as a number mentioned in a prompt105

(Griffiths, Lieder, & Goodman, 2015; Lieder, Griffiths, Huys, & Goodman, 2018). Order106

effects, where the sequence of evidence encountered affects the final belief, are pervasive in107

human learning. If new hypotheses are arrived at through a limited local search starting108

from a previous hypothesis then we should expect path dependence and auto-correlation109

between a single learner’s hypotheses over time (Bramley, Dayan, et al., 2017; Dasgupta,110

Schulz, & Gershman, 2016; Fränken, Theodoropoulos, & Bramley, 2022; Thaker,111

Tenenbaum, & Gershman, 2017; Zhao, Lucas, & Bramley, 2022). Probability matching is112

also natural under a constructivist perspective. In experiments, participants often choose113

options in proportion to their probability of being correct or optimal rather than reliably114

selecting the best action, as we might expect if they had the full posterior to hand (Shanks,115

Tunney, & McCarthy, 2002). However, it can be shown that rather than being a choice116

pathology, probability matching may be better seen as a best case scenario for a learner117

limited to using the the endpoint of a local search as their guess (Bramley, Dayan, et al.,118

2017). It has been argued that in a variety of plausible everyday settings, a119

single-sample–based decision can be the appropriate computation–accuracy tradeoff for a120

resource-limited learner (Vul, Goodman, Griffiths, & Tenenbaum, 2009). Confirmation bias121

is also pervasive in human reasoning and active learning (Klayman & Ha, 1989) and hard122

to explain in purely Bayesian terms. Wason (1960) famously asked participants to test and123

identify a hidden rule and initially simply told them that the sequence 2–4–6 followed the124

rule. The intended true rule was simply “ascending numbers” but participants frequently125

guessed more complex rules such as “numbers increasing by two”. Analysis of participants’126

tests revealed that they frequently generated tests that would be rule-following under their127

hypothesis (such as 6–8–12), so failing to adequately challenge and disconfirm this128

hypothesis. On a constructivist perspective, learners can only base their exploration on129

testing hypotheses they have actually generated (or else behave randomly). To the extent130

that certain simpler hypotheses like “ascending numbers” were less likely to be generated131

on the basis of the provided example (cf. Oaksford & Chater, 1994; Tenenbaum, 1999), it is132

not surprising that participants failed to actively exclude these possibilities with their tests.133

In the computational cognitive science literature, recent symbolic search ideas134

manifest under the label of “learning as program induction”. Such models have begun to be135

applied to synthesizing humanlike problem solving and planning and tool use (Allen,136

Smith, & Tenenbaum, 2020; Ellis et al., 2020; Lai & Gershman, 2021; Lake, Ullman,137

Tenenbaum, & Gershman, 2017; Ruis, Andreas, Baroni, Bouchacourt, & Lake, 2020; Rule,138

Schulz, Piantadosi, & Tenenbaum, 2018). We will draw on these in examining children and139
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adults hypothesis generation.140

Constructivism in Development141

The “child as scientist” (Carey, 1985; Gopnik, 1996)—or recently, “child as hacker”142

(Rule, Tenenbaum, & Piantadosi, 2020) — perspective casts children’s cognition as driven143

by broadly the same inductive processes as adults’ but at an earlier stage in a journey of144

construction and discovery.145

While children have been shown to be capable active learners (McCormack,146

Bramley, Frosch, Patrick, & Lagnado, 2016; Meng, Bramley, & Xu, 2018; Sobel & Kushnir,147

2006) there is also evidence that children’s ability to learn effectively from active learning148

data is more fragile than adults’. For example, children’s play can look repetitive and149

inefficient when held to information theoretic norms (Lapidow & Walker, 2020; McCormack150

et al., 2016; Meng et al., 2018; Sim & Xu, 2017). Sobel and Kushnir (2006) also found151

children were much less accurate at causal structure identification in “yoked”152

conditions—where they had to use evidence generated by someone else to learn—while153

adults are less effected, sometimes able to learn about as well from others’ data as their154

own (Lagnado & Sloman, 2006). This performance gap has been argued to stem from the155

mismatch between whatever idiosyncratic hypotheses are under consideration by the156

observer and those being tested by the active learner, making the yoked learner less able to157

use the data to progress their theories (Fränken et al., 2022; Markant & Gureckis, 2014).158

Relatedly, children have been argued to be more narrowly focused toward testing a single159

hypothesis at a time (Bramley, Jones, Gureckis, & Ruggeri, 2022; Ruggeri & Lombrozo,160

2014; Ruggeri, Lombrozo, Griffiths, & Xu, 2016). This might reflect a less developed161

working memory, restricting the number of hypotheses children can keep track of and162

compare to evidence. An early emphasis on exploration has also been argued to be an163

effective solution to a lifelong explore–exploit tradeoff, since earlier discoveries can be164

exploited for longer (Gopnik, 2020). Program induction also provides a potential165

explanation for transitions between developmental “stages”, characterized by occasional166

leaps forward in insight. For instance, Piantadosi, Tenenbaum, and Goodman (2012)167

demonstrate how a program induction model can reproduce a characteristic developmental168

transition from grasping a few small numbers to discovering a recursive concept of real169

numbers. We note that an important part of constructivism is the idea that we cache the170

useful concepts we invent (cf. Zhao, Bramley, & Lucas, 2022), meaning our conceptual171

library grows as we do, becoming richer and more powerful for solving the tasks we172

repeatedly face. We do not attempt to model this important aspect of constructivism in173

this paper but return to it in the General Discussion.174
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Differences between childlike and adultlike inductive inference might also be175

captured by parameterizable differences in search, potentially reflecting principles of176

stochastic optimization (Lucas, Bridgers, Griffiths, & Gopnik, 2014). For instance, young177

children have been found to be quick to make broad abductive generalizations from a small178

number of examples—e.g. readily imputing novel physical laws to explain surprising179

evidence (L. E. Schulz, Goodman, Tenenbaum, & Jenkins, 2008). Building on this finding,180

children’s hypothesis generation and search has been framed as rationally “higher181

temperature” than adults’—producing more diversity of ideas at the cost of being noisier182

(Lucas et al., 2014). This is algorithmically sensible as optimization over high dimensional183

spaces is known to be more effective when proposals are initially large leaps and decrease184

over time, as in simulated annealing (Van Laarhoven & Aarts, 1987). However, a high185

diversity of guesses might also reflect that children have a rationally flatter latent prior186

than adults, inherently entertaining a wider range of hypotheses at the cost of entertaining187

high probability ones less frequently. A third possibility is that children’s hypothesis188

generation might be driven more by bottom-up processing than adults’. With less189

established expectations, or less powerful primitive concepts to work with, children’s190

hypotheses might more directly describe encountered patterns, while adults might rely191

more on their existing knowledge hierarchy to constrain hypothesis generation in a192

top-down way (Clark, 2012). We will contrast children’s and adults’ hypothesis generation193

and active learning in a rich task setting that allows us to closely investigate these ideas.194

Task195

In order to study inductive learning, we use a rich open-ended task that extends on196

Wason (1960) and the logical rule-induction tasks studied by Nosofsky et al. (1994), Lewis197

et al. (2014), Goodman et al. (2008), and Piantadosi et al. (2016). Akin to the198

blicket-detector paradigm in developmental causal cognition (Gopnik et al., 2004; Lucas et199

al., 2014), our task has a causal framing, probing inductive inferences about what200

conditions make an effect occur in a minimally contextualized domain. However, departing201

from Blicket detector tasks, we include a large and physically rich set of features that202

learners can draw on in their inferences allowing test scenes to vary in the number, nature203

and arrangement of objects. Our task is inspired by a tabletop game of scientific induction204

called “Zendo” (Heath, 2004) and builds on a pilot task examined in (Bramley, Rothe,205

Tenenbaum, Xu, & Gureckis, 2018). In it, learners both observe and create scenes, which206

are arrangements of 2D triangular objects called cones (Figure 1) and test them to see if207

they produce a causal effect (which arrangements of blocks “make stars come out” in our208

minimal framing). The goal is to both predict which of a set of new scenes will produce the209
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effect and describe the hidden rule that determines the general set of circumstances210

produce the effect (try it here). Scenes could contain between 1 and 9 cones. Each cone has211

two immutable properties: size∈ {small, medium, large} and color∈ {red, green, blue} and212

continuous scene-specific x∈(0,8), y∈(0,6) positions and orientations∈(0,2π). In addition to213

cones’ individual properties, scenes also admit many relational properties arising from the214

relative features and arrangement of different cones. For instance, subsets of cones might215

share a feature value (i.e., be the same color, or have the same orientation) or be ordered216

on another (i.e., be larger than, or above) and pairs of cones might have relational217

properties like pointing at one another or touching. This results in an extremely rich218

implicit space of potential concepts.219

We note that, by design, the dimensionality of this task makes it extremely difficult.220

As with Wason’s 2-4-6 example, and genuine questions of scientific induction, the hard part221

of this task is not evaluating whether a candidate hypothesis can explain the data but222

rather generating the right hypothesis in the first place. As with the 2-4-6 task, there are223

always infinite data-consistent possibilities and while the bulk of these may be outlandishly224

complex, many others may still be simpler or more salient than the ground truth. Without225

carefully gathered evidence with broad coverage of the space of possible scenes, a learner226

will frequently be unable to rule out simpler possibilities that more parsimoniously capture227

the data than the ground truth, essentially being left with evidence that would not lead228

even an unbounded Bayesian agent to the correct answer.1229

We use mixed-methods (Johnson, Onwuegbuzie, & Turner, 2007), analyzing both230

qualitative data in the form of freely generated guesses about the symbolic rules and231

quantitative data in the form of forced choice generalizations. Concretely, we adopt an232

expressive concept grammar inspired by constructivist ideas in developmental psychology233

and formalized using program induction ideas from machine learning. We assume the234

latent space of possible concepts in our task are those expressible in first order logic235

combined with lambda abstraction (Church, 1932) and full knowledge of the potentially236

relevant features of the scene (see Appendix Table A-1 for the grammatical primitives we237

assume). Table 1 shows the five ground truth rules we used in our experiment expressed in238

natural language and in lambda calculus along with the initial rule-following example scene239

we provided to participants.240

Given the inherent difficulty of this type of task we expect absolute accuracy to be241

1 In tabletop game form, Zendo typically takes dozens of rounds of tests and incorrect guesses by multiple
guessers, as well as leading examples and clues from the rule-setter for even simple hidden rules to be
identified. An online community on Reddit play a binary sequence version of Zendo, often taking hundreds
of guesses before the answer is found if it is at all (for example here).

https://eco.ppls.ed.ac.uk/~nbramley/zendo_kas/demo.html
https://www.reddit.com/r/mathriddles/comments/7ao4oa/zendo_16/
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a) b)
!Move the cone by 
holding left-click 

!Rotate the cone with 
keys Z and X 

!Delete the cone with 
right-click

!Add a new cone 
with left-click

!Test your 
scene

c)
Which of the arrangements below emit Zeta waves?

1. (example) 2. 3. 4.

5. 6. 7. 8.

Figure 1
The experimental task: a) Active learning phase. b) An example sequence of 8 tests, the
first is provided to all participants, and subsequent tests are constructed by the learner
using the interface in (a). Yellow stars indicate those that follow the hidden rule. c)
Generalization phase: Participants select which of a set of new scenes are rule following by
clicking on them.

fairly low for both children and adults (and for our models). However, we expect that242

many participants will be able to make guesses that are consistent with most of the243

evidence they have. Since we might expect evaluation of evidence–hypothesis consistency244

to be more error-prone in children, we expect adults’ guesses to be more strictly consistent245

with their evidence. Finally, there is the question of relative dominance of bottom-up and246

top-down processing in children’s and adults’ guesses. To explore this, we consider two247

models that differ in this dimension.248

Context-free hypothesis generation249

In examining children’s and adults’ inferences, we start by laying out a “top-down250

first” approach to hypothesis generation, utilizing a probabilistic context-free grammar251

(PCFG) to define and draw from a latent prior over concepts expressible in first order252

logic. A PCFG is a collection of “construction rules” that, when run repeatedly,253

stochastically create expressions in an underlying grammar (Ginsburg, 1966). A PCFG can254

be used to generate a prior sample of hypotheses that can then be weighted by their255

likelihoods of producing observations—here, their ability to reproduce the labels of the256

scenes that the participant has tested. The hypotheses make predictions about new scenes257

which can be weighted by their posterior probability and marginalized over to make258

generalizations. Because parts of this production process and underlying grammar involve259

branching—e.g., “and” and “or”—sampled hypotheses can be arbitrarily long and complex,260

involving multiple Boolean functions and complex relationships between an unlimited261

number of bound variables. In this way, an infinite latent space (in our case first order logic262
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+ lambda abstraction) is covered in the limit of infinite PCFG sampling (see Figure 2a).263

Thus, one way to think of the PCFG is as a computational level characterization of the264

problem of inductive inference. However, we will argue that the generative mechanism at265

the heart of of the PCFG framework also elucidates important mechanistic considerations266

and provides the representational framework needed to ground algorithmic approximations267

that depart from this ideal and reflect core constructivist ideas.268

At the computational level, different PCFGs, containing different primitives and269

expansions, can be compared against human behavior. And the probabilities for the270

productions in a PCFG can be fit to maximize correspondence with human judgments. In271

this way, recent work has attempted to infer the “logical primitives of thought” (Goodman272

et al., 2008; Piantadosi et al., 2016). Here we consider a single expressive PCFG273

architecture and examine its behavior under limited sampling. We examine its behavior274

with uniform production weights but also with weights engineered to produce the275

characteristics of “childlike’ and “adultlike” symbolic guesses in our task. Crucially, under276

all these weighting schemes, our PCFG embodies the principle of parsimony: Simpler277

concepts—composed of fewer grammatical parts (Feldman, 2000)—have a higher278

probability of being produced and so are favored over more complex ones equally able to279

explain the data.280

While naively, we might expect children to entertain simpler concepts than adults,281

this induction framework tends to predict the reverse. If we assume we start life at our282

most flexible, or “programable” (Turing, 2009), this would be like being born with concept283

building mechanism that is initially “untuned”, growing its concepts essentially through284

blind mutation (Campbell, 1960) where each forking path on the road to a complete285

concept starts out equiprobable. However as a learner gathers a lifetime of experience, we286

would expect these construction weights to become tuned so as to favor certain elements or287

features that have proven useful in the past. A uniform-weighted PCFG hypothesis288

generator will thus tend to produce greater diversity than a more fine-tuned one. As such,289

it embodies the idea that more elaborately or implausibly structured, or “weird”, concepts290

will come to the minds of children than adults.291

What PCFG approaches have in common is a generative mechanism for sampling292

from an infinite latent prior, here over possible logical concepts. However, sampled293

“guesses” must also be tested against data. Unfortunately, in our task—and perhaps even294

more so outside of it—the vast majority a priori generated concepts are likely to be295

inconsistent with whatever evidence a learner has already encountered.2 For this reason,296

2 In our task, many more are simply tautological (i.e., “All cones are red or not red”), contradictory (i.e.,
“There is a cone that is red and not red”), or physically impossible (“Two (different) objects have the same
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the procedure is astronomically inefficient, requiring very large numbers of samples in order297

to reliably generate non-trivial rules. One can also use a PCFG to adapt existing298

hypotheses, for instance using a Markov Chain Monte Carlo scheme in which parts of a299

hypothesis are regrown and accepted according to their fit to evidence (cf. Fränken et al.,300

2022; Goodman et al., 2008). While we think this approach is promising we do not model301

this here, and simply return to it in the general discussion. However, we do additionally302

consider an alternative to the PCFG, that provides a more sample efficient and, on the face303

of it, more cognitively plausible mechanism for initializing new hypotheses.304

Context-based hypothesis generation305

Instance Driven Generation (IDG) (Bramley et al., 2018) is a recent proposal306

related to the PCFG framework but with a key difference. Rather than generating initial307

hypotheses prior to, or blind to the current evidence, the IDG generates ideas inspired by308

encountered patterns (cf. Michalski, 1969), thus incorporating bottom-up reactivity to309

evidence into its conceptualization process. Each IDG hypothesis starts with an310

observation of features of one or several objects in a scene and uses these to back out a true311

logical statement about the scene in a stochastic but truth-preserving way. If the scene is312

rule following, this statement constitutes a positive hypothesis about the hidden rule.313

Otherwise, it constitutes a negative hypothesis, i.e. about what must not be present. Thus,314

an IDG does not begin each learning problem with a prior over all possible concepts, but315

rather draws its initial ideas from a restricted space consistent with the extant patterns in316

a focal observation. Figure 2b illustrates this approach. While a regular PCFG effectively317

starts at the top level (i.e. outermost nesting) of a compound concept and works downward318

and inward, the IDG starts from the central content (drawn from its observation) and319

works upward and outward to a quantified statement, ensuring at each step that the320

statement is true of the scene. The result is a mechanism that uses its concept grammar to321

describe features and patterns in evidence. This means that the IDG does not entertain322

hypotheses that are possible but never exemplified by a scene. For example, “at most five323

reds” would only be generated if a learner actually saw a rule-following scene containing324

five reds. A key prediction of the IDG is an interaction between the scenes generated by325

the participant and the hypotheses these subsequently inspire, with simpler scenes,326

embodying fewer extraneous or coincidental patterns being more likely to inspire the327

learner to generate the true concepts.328

position”). Indeed, around 20% of the hypotheses generated by our PCFGs are tautologies, and 15% are
contradictions. Many others combine a meaningful hypothesis with a tautological corollary (i.e., “There is
a large red object that is larger than all medium sized objects”).
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a) Context free generation b) Context based generation

e.g.: #1

#2 #3 #4

Figure 2
a) Example generation of hypotheses using the PCFG. b) Examples of IDG hypothesis
generation based on an observation of a scene that follows the rule. New additions on each
line are marked in blue. Full details in Appendix A.

Hypothesis-driven scene generation329

Uncertainty-driven learning330

Normatively, test scenes should serve to minimize expected uncertainty across the331

full hypothesis space. A direct way to approximate this here is to start with a prior sample332

of hypotheses (e.g. drawn context-free) and progressively create scenes that serve to333

minimize expected uncertainty over this sample by forking their predictions (Bramley et334

al., 2022; Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 2014). We visualize this335

in Figure 3a, imagining three labelled scenes d1 . . . d3 that progressively divide a prior336

sample of hypotheses (hs) until a most-likely candidate emerges. The constructivist setting337

presents a challenge for this norm since the hypothesis space is latent and is initially338

unexplored.339

Exploration-driven learning340

An alternative hypothesis-free approach might be to explore the data space directly,341

for instance generating scenes that vary in the number and nature of objects they contain342

in the hope of naturally uncovering concept boundaries and inspiring hypothesis343

generation. We sketch this in Figure 3b. Efficient uncertainty-driven and344

exploration-driven learning both predict generation of scenes that differ substantially from345

one another, ideally being anti-correlated so as to cover the space efficiently (Osborne et346

al., 2012). However this does not seem well matched to constructism, wehere we rather347

think of the learner as entertaining a small but not completely empty set of possibilities348
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b ) Exploration-driven scene generation

c) Confirmation-driven scene generation d) Sequential contrastive scene generation

a) Uncertainty-driven scene generation

h1

h2

Figure 3
Aactive learning strategies: H = latent hypothesis space D = data space. Arrows indicate
direction of inferences. Stars indicate scenes that followed the rule. a) Uncertainty-driven
tests over prior sample h ∈ H. Dotted lines separate hypotheses by outcomes they predict
for initial example e and self-generated scenes d1 . . . d3. Shading indicates which hs
mis-predict each outcome. b) Exploration-driven testing. Scenes selected to explore D
without regard to H. Outcomes may then inspire hypotheses. c) Confirmatory testing:
Example e inspires hypothesis h1. Scenes then test its generalization predictions. Colored
circles visualize space of scenes for which each hypothesis predicts outcome will be produced.
d1 and d2 are correctly predicted as rule following. d3 is mispredicted by h1 in producing the
outcome, leading to a new h2. d) Sequential contrastive testing: e inspires h1 and h1
inspires h2, d1 contrasts these leading to rejection of h1. h2 then inspires h3 and d2
contrasts these, etc.

and hence unable to capitalize on such diverse evidence.349

A constructivist way to think of active learning is as acting in ways that challenge350

one’s current hypotheses and so facilitate their refinement or the construction of better351

alternatives. We sketch two such approaches: Confirmatory testing and Sequential352

Contrastive testing.353

Confirmatory testing354

With a candidate hypothesis in mind, a learner can seek to challenge it through its355

generalizations (Nickerson, 1998; Popper, 1959). For example, after encountering the scene356

in row 1 of Table 1, a learner might generate the initial hypothesis that “there must be a357
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small red” (since this describes one of the objects). To confirm this, they might try a358

positive generalization test, i.e. keep the small red but remove or randomize the other359

objects and predict the effect will still occur (e.g. d1 in Figure 3c). Alternatively they360

might use it to predict a way to minimally alter d1 so it no longer produces the effect,361

removing the small red and keeping the rest (e.g. d2). So long as the learner gets the362

outcome they anticipate, they can stick with their hypothesis. When they don’t they can363

either abandon or adapt it. For instance, d3 in Figure 3c proves inconsistent with h1,364

requiring a new hypothesis be generated that can explain why d1 and d3 produce the effect365

but not d2. A limitation of a one-hypothesis-at-a-time approach is that it is unclear how366

distinctive the hypothesis’s generalization predictions are.3 For example, since the ground367

truth in this example is just “there is a red”, producing new scenes containing small reds368

will fail to reveal that the redness but not the smallness is causative of the label. Another369

limitation is that it is unclear what to do when one’s hypothesis is ruled out, especially if370

the scene if the test that differs dramatically from the ones with which it is consistent. For371

this reason, the education literature has long emphasized the utility of a “control of372

variables” strategy (Chen & Klahr, 1999; Klahr, Fay, & Dunbar, 1993; Klahr, Zimmerman,373

& Jirout, 2011). This amounts to manipulating exactly one design variable per test, such374

that any difference in the outcome is straightforwardly attributable to the change in the375

input providing a route to adapting one’s hypothesis when it fails.376

Sequential contrastive testing377

A related scheme that might allow a constructivist learner to escape some378

pathologies of confirmatory testing is the iterative counterfactual strategy described in379

Oaksford and Chater (1994). That is, learners might first generate an alternative380

hypothesis h2 by inverting some feature of their initial hypothesis and then focus their next381

test on separating h1 from h2 (e.g., Figure 3d).4 For example, starting with h1:“there is a382

small red”, one local alternative would be to drop the the mention of size, leading to h2:383

“There is a red”. Now the learner has a pair of hypotheses and a recipe distinguishing384

between them: Testing a scene containing a red object that is not small (e.g. d1). This385

could again be easily achieved by adapting the original scene, so the small red is a different386

3 A general finding is that positive confirmatory tests are valuable to the extent that the outcome of
interest is rare, e.g. if most scenes are not rule following. This is not generally the case in this task.
4 In Oaksford and Chater’s (1994) formulation, the complementary hypothesis is then inconsistent with the
scene that inspired the original hypothesis, such as going from “increasing by two” (inspired by seeing
2-4-6) to “decreasing by two” such that its falsification may be mistaken for confirmation of the original
hypothesis. Here there are many ways to flip the content of a hypothesis both with or without rendering it
inconsistent with a scene that inspired it.
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size (Chen & Klahr, 1999; Klahr et al., 1993, 2011).If d2 produces the effect, h1 can be387

supplanted with h2. Otherwise h2 can be rejected and a new h3 can be generated. Either388

way, this approach facilitates constructivism by providing a direction of travel however a389

test comes out, so allowing a constructivist learner to explore both the data and hypothesis390

spaces in parallel (Klahr & Dunbar, 1988).391

As illustrated in Figure 3, what constructivism-compatible hypothesis-driven392

approaches have in common is a prediction of anchoring in data space: Each new scene393

shares features with the scene that inspired the earlier hypotheses that inspired it. This394

contrasts with the pattern we would expect if participants followed a normative395

uncertainty-driven approach or model-free exploration-driven approach since both tend to396

predict each scene should be as different as possible to earlier ones (although see Navarro &397

Perfors, 2011, for how this depends on the structure of the hypothesis space). While we do398

not collect the trial-by-trial guesses we would need to distinguish between all the accounts399

we mention, we will look for an empirical signature of constructivist active learning, in the400

form of anchored, incremental and systematic testing patterns and assess whether these401

differ between children and adults.402

Table 1
Rules Tested in Experiment

Rule Initial Example

1. There’s a red
∃(λx1 : =(x1, red, color),X )

2. They’re all the same size
∀(λx1 : ∀(λx2 : =(x1, x2, size),X ),X )

3. Nothing is upright
∀(λx1 : ¬(=(x1, upright, orientation)),X )

4. There is exactly 1 blue
N=(λx1 : =(x1, blue, color), 1,X )

5. There’s something blue and small
∃(λx1 : ∧(=(x1, blue, color),=(x1, 1, size)),X )

Overview403

In summary, the main goal of this paper is a close investigation of developmental404

differences in active open-ended hypothesis generation examined through the lens of a405
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constructivism-inspired rational-process framework that puts stochastic generation and406

incremental search at the center of the individuals’ learning. To foreshadow, we find that407

children make more complex guesses about the hidden rule that are only a marginally408

worse fit to the evidence than adults’ guesses. Children also create more complex learning409

data than adults but do so less systematically. We then show that both children’s and410

adults’ guesses reflect an evidence-inspired process of compositional concept formation as411

modeled by our Instance Driven Generation algorithm over a top-down–first PCFG norm,412

capturing that their guesses are inspired by discovery of patterns in their learning data. We413

show these behavioural patterns are a natural result of children having a less fine-tuned414

concept generation mechanism. Crucially, we also show that both children’s and adults’415

symbolic guesses causally drive their generalizations, as opposed to these being driven by416

surface feature resemblance as emphasized in statistical views of concepts (cf. Medin &417

Schaffer, 1978; Posner & Keele, 1968). Finally, we show that both children’s and adults’418

create scenes by adapting earlier scenes, which we argue is consistent with confirmatory or419

iterative counterfactual testing rather than uncertainty- or exploration-driven testing.420

Experiment421

Methods422

Participants423

We recruited 54 children in the lab (23 female, aged 8.97± 1.11) and 50 adults424

online (22 female, aged 38.6± 10.2). Forty children completed all five trials and the425

remaining 14 completed 2.71± 1.07 trials before indicating that they had had enough. For426

these children we simply include the trials that they completed. We collected participants427

until we reached our intended sample size of 50 per agegroup after exclusions. We chose428

this sample size simply to exceed our 2018 (N=30) pilot with adults.5 Ten additional adult429

participants completed the task but were excluded before analysis for providing nonsensical430

or copy-pasted text responses. Adult participants were paid $1.50 and a performance431

related bonus of up to $4 ($1.96±0.75). Children’s sessions lasted between 30 minutes and432

an hour. For adults, the task took 27.49±12.09 minutes of which 9.8±7.9 was spent on433

instructions. The children’s and adults’ versions of the task are available to try here434

https://github.com/bramleyccslab/computational_constructivism.435

5 While we note that 104 is not a large sample by modern standards, our focus is on modeling inferences at
the individual level. Each participant produces an exceptionally rich dataset and our analyses have
unusually large storage and compute requirements making a larger sample infeasible to analyze.

https://github.com/bramleyccslab/computational_constructivism
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Design436

All participants faced the same five learning problems in an independently437

randomized order (see Table 1). For each learning problem participants were given an438

initial positive example, as shown in the table, and then performed self tests of their own439

before making generalizations and free guesses as to the hidden rule.440

Materials and Procedure441

Child sample.442

Instructions. Participants sat in front of a laptop with a mouse attached, with443

the experimenter sitting next to them and interacted with the task through the browser.444

The experimenter read out the instructions for the participant. These explained445

how the game worked and showed the participant five examples of possible rules the blocks446

could have (relating to color, size, proximity, angle, or relation). The instructions also447

included videos showing the participant how to manipulate the blocks using the mouse and448

keyboard. After the instructions, the participant was given a comprehension check of five449

true or false questions. If they did not get them all right on their first try, the experimenter450

read through the instructions again and asked them again. All participants passed the451

comprehension check the second time.452

Learning Phase. The participant was then introduced to an initial example of a453

block type (“Here are some blocks called [name]s. We’re going to click test to see if stars454

will come out of the [name]s.”). The initial example of each block type (i.e., each rule) was455

constant across participants. Since every initial example of a block type was a positive456

example, a star animation played when the “Test” button was clicked. The participant was457

encouraged to use either the trackpad or the mouse to click the “Test” button, whichever458

was comfortable for them.459

After the initial positive example, the participant was shown a blank scene with460

blocks available to add to it, and was asked to test the blocks seven more times461

(Figure 1a). The scene creation interface was subject to simulated gravity, meaning there462

were physical constraints on how the objects can be arranged. The experimenter told them463

they could now play with the blocks like they saw in the instructional video. The464

experimenter also reminded the participant of how to add, remove, move, and rotate blocks465

on the screen using the mouse and keyboard. Participants were encouraged to ask for help466

with moving the blocks if needed. If they seemed to be having trouble, the experimenter467

would ask if they needed help with setting up the blocks. The participants were told that468

when they had finished moving the blocks around, they should press the “Test” button to469

see if stars came out of them. For positive tests, the experimenter would neutrally say:470
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“Stars did come out of the [name]s that time” and for negative tests: “Stars did not come471

out of the [name]s that time.”472

Question Phase. After testing the blocks a total of eight times (Figure 1b),473

participants were shown a selection of eight more pre-determined scenes containing blocks474

(Figure 1c). The experimenter asked them to click on which pictures they thought the475

stars would come out of, reminding them that they could pick as many as they wanted, but476

they had to pick at least one. Unknown to participants, half of these scenes were always477

rule following but their positions on screen were independently counterbalanced. The test478

scenes and their labels remained visible on the screen throughout the Learning and479

Question phases.480

Free Responses. Participants were then presented with a blank text box and481

asked, “What do you think the rule is for how the [name]s work?” The experimenter typed482

into the text box the participant’s verbal answer verbatim, or as close as possible.483

The Testing, Question, and Free Response phases were repeated identically for each484

of the five block types. After the five trials were completed, the participant was shown the485

results including each true rule and how well they did on each problem and was thanked for486

playing the game. As compensation, participants were allowed to pick a small toy out of a487

prize box, and parents were given a paper “diploma” to commemorate their child’s visit.488

Adult sample. We recruited our adult sample from Amazon Mechanical Turk489

and adults completed the task on their own computers. They completed the same490

instructions as the children with an additional section about bonuses and had to491

successfully answer comprehension questions, including an additional two about the492

bonuses, before starting the main task. Specifically, adults were bonused 5 cents for each493

correct generalization (up to a possible 40 cents for each of the five trials) and an494

additional 40 cents for a correct guess as to the hidden rule, again for each of the five trials.495

Aside from having no experimenter in the room, and filling out the text fields themselves,496

the procedure was identical to the children’s task. Full materials including experiment497

demos, data and code are available at the Online Repository.498

Results499

We first look at the qualitative characteristics of children’s and adults’ explicit rule500

guesses then assess relative accuracy of participants’ rules and generalizations about new501

scenes before comparing the features of the scenes produced by adults and children. We502

will then turn to a series of model-based analyses that attempt to reproduce participants503

distributions of free guesses, generalizations and scenes within the constructivist framework.504

https://github.com/bramleyccslab/computational_constructivism
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Guess complexity and constituents505

We had human coders translate participants’ free text guesses about the hidden rule506

wherever possible into an equivalent logical expression using the grammatical elements507

available to our learning models. We were able to do this for 86% (n=205) of children’s508

trials and 88% (n=219) of adults’ trials. For example, if the participant wrote “There must509

be one big red block” this was converted into510

N=(λx1 :∧(=(x1, large, size),=(x1, red, color)), 1,X ). This logical version can be511

automatically evaluated on the scenes and can be read literally as asserting “There exists512

exactly one x1 in the set of objects X such that x1 has the size ‘large’ and the color ‘red’”.513

We had a primary coder, blind to the experimental hypotheses code all responses, and a514

second coder blind spot check 15% of these (64). The two coders agreed in 95% of cases.515

We provide further details about the coding in Appendix B and full coding resources and516

full coding data in the Online Repository.517

To explore structural differences in children’s versus adults’ hypotheses, we first518

break down these encoded rule guesses into their logical parts. This primarily reveals that519

children’s encoded rules were substantially more complex than those generated by adults520

and that both were substantially more complex than the ground truth rules. Children’s521

and adults’ rules also differed in terms of the prevalence of particular elements and features522

(see Figure 4). As an example, one child’s rule for problem 1 was “You must have two reds523

and one blue” which was translated to524

N=(λx1 : N=(λx2 : (∧(=(x1, red, color),=(x2, blue, color)), 1,X ), 2,X ), requiring two525

quantifiers (N=), one boolean (∧), 2 equalities (=()), and two references to the feature526

color. The typical child-generated-rule used 2.25 quantifiers (4c), 2.06 booleans (4d), 1.55527

equalities and inequalities (4e), referred to 1.39 different primary features (color, size,528

orientation, x- or y-position, groundedness, 4f) and 0.37 relational features (contact,529

stackedness, pointing, or insideness, 4g). In contrast, the average adult generated rule530

required just 1.84 quantifiers, 1.20 booleans, 1.47 equalities and inequalities, and referred531

to 1.44 primary features but only 0.16 relational features. Children thus used significantly532

more quantification (i.e. referred to more separate entities) t(102) = 3.98, p < .0001, more533

booleans t(102) = 3.59, p < .0001 and relational features t(102) = 3.12, p < .002 than534

adults, but the agegroups did not differ significantly in mentions of (in)equalities535

t(102) = −0.05, p = 0.96 and references to the objects’ basic features536

t(102) = −.91, p = .36. When children posited that an “at least”, “at most” or “exactly” a537

certain number of objects must have certain features, the number they chose was538

substantially higher than that for adults (2.36 compared to 1.58, t(68) = 3.72, p = 0.0004).539

In terms of features, adults frequently gave rules relating to color (58% compared to 39% of540

https://github.com/bramleyccslab/computational_constructivism
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children’s rules, t(102) = 2.27, p = 0.025), while children were more likely to refer to541

positional properties (26% compared to 18% of adults’ rules t(102) = 2.15, p = 0.034).542
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Figure 4
(a) Length of Children’s and Adults’ rule guesses. (b) Relative frequency of rule elements in
logic coded versions of these rules, c–g with respect to quantifiers, booleans, (in)equalities,
basic and relational features respectively. Error bars show normal 95% confidence intervals.
Yellow points in a show ground truth frequency.

Accuracy543

Having observed systematic differences in the content of children’s and adults’544

hypotheses, we now ask if these manifest in children’s and adults’ inferential success; their545

ability to identify the ground truth and make accurate generalizations.546

Guesses. Both children and adults were occasionally able to guess exactly the547

correct rules, doing so a respective 11% and 28% of trials. Adults produced the correct rule548

more frequently than children t(102) = 4.0, p < .001 and were more likely then children to549

guess correctly (at a corrected significance level of 0.01) for the “All are the same size”,550

“One is blue” and “There is a small blue” rules (see Figure 5a). The plot reveals that no551

child identified rule 4 exactly “One is blue” and only one identified rule 5 “There is a small552

blue”, while a slightly greater proportion of children than adults identified the positional553

“Nothing is upright” rule. Note that chance level baseline for these free guesses is554

essentially 0%. There are an unlimited number of wrong guesses and a small set of555

semantically correct guesses. It is also the nature of this inductive problem that there are556

an infinite number of wrong yet perfectly evidence-consistent rules for any evidence and557

often there is a simpler evidence-consistent rule available than the ground truth.6 Thus, it558

6 Although as more evidence arrives the ground truth is increasingly likely to be among “simplest” rules in
a posterior sample.
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Figure 5
a) Percentage children and adults guessing correct rule. b) Generalization accuracy. Bars
show mean ± bootstrapped 95% CIs. In a–b, Black vertical lines denote chance
performance. Blue and red points show performance of simulated PCFG and IDG learners
as described in Modeling section. Circles = guessing the MAP rule or MAP generalization
(after marginalizing over posterior). “+” shows accuracy of a single posterior sample. Both
models here use agegroup-consistent production weights, CIs show bootstrapped 95%
confidence intervals. c) Consistency between subjects’ rule guess and their (self-generated)
learning data, and generalizations.

is instructive to ask whether participants’ rules, where not exactly correct, are nevertheless559

consistent with the evidence they gathered.560

While, a completely random rule would only be consistent with all 8 scenes around561

0.58 × 100 = 0.4% of the time, children’s explicit rule guesses were perfectly consistent with562

the labels of the 8 training scenes 30% of the time and Adult’s guesses were fully consistent563

54% of the time. There was a moderate difference in average proportion of the learning564

data explained by children’s compared to adults’ rules 71%± 27% vs 87%± 17%565

t(98) = 5.6, p < .001. Similarly there was a difference the proportion of the participants’566

generalizations that were consistent with their rule guess 72%± 21% vs 84%± 16%,567

t(98) = 4.1, p < .001 (see Figure 5c for a by-rule breakdown).568
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Generalizations. We now report participants performance in predicting which of569

8 new scenes will produce stars (i.e. follow each hidden rule). Across the five tasks, both570

children and adults guessed more accurately than chance (50%): children mean±SD571

59%± 11%, t(53) = 5.9, p < .001; adults 70%± 14%, t(49) = 10.3, p < .001. Adults’572

generalizations were significantly more accurate than children’s t(102) = 4.6, p < .001 and573

children’s accuracy improved significantly with age F (1, 52) = 6.2, η2 = .11, p = 0.015.574

Indeed, adults’ generalization accuracy was above a Bonferroni-corrected chance level of575

p ≤ 0.01 for all five rules and children were similarly above chance except for rules 1.576

“There is a red” (t(46) = 2.5, p = .015) and 4. “One is blue” (t(46) = .1, p = .915; see577

Figure 5b).578

Scene generation579

As well as generating more complex rules, children tended to create more complex580

test scenes than adults. The average child-generated scene contained 3.7±0.88 objects581

(close to the average in the example scenes) compared to 2.8±0.57 objects for adults582

(t(102) = 5.8, p < .001). The complexity of a learner’s test scenes was inversely related to583

their performance overall (F (1, 102) = 39.0, β = −0.08, η2 = .28, p < .001) and also within584

both the children (F (1, 52) =, β = −0.056, η2 = .20, p < .001) and adults585

(F (1, 49) = 9.1, β = −0.096, η2 = .16, p < .001) taken individually (see Figure 6a). Within586

the children, age was inversely associated with scene complexity, with an average of 0.35587

fewer objects per scene for each additional year F (1, 52) = 12.6, η2 = .19, p < .001. Aside588

from this difference, we also assess whether children’s or adults’ scenes bear the hallmarks589

of being driven by confirming or distinguishing between a small set of possible rules.590

If participants do follow a control of variables, confirmatory, or iterative591

counterfactual approach, we would expect the scenes generated by participants to be more592

similar to the initial example or one of their own preceding scenes, than to a random scene593

or a scene drawn from a different learning problem. If they are rather maximising594

information with respect to a larger set of hypotheses, or exploring the data space595

efficiently, we would expect the opposite pattern of indpenendence or anticorrelation. To596

explore this, we constructed a distance metric that we used to measure the597

feature–dissimilarity between any pair of scenes. The metric is based on edit distance,598

encoding how much and how many of the features (positions, colors, shapes) of the objects599

in one scene would have to be changed to reproduce the other scene. This involved600

z-scoring and combining a “minimal-edit set” of feature differences and incorporating a601

proportional cost for additional or omitted objects and scaling by the number of objects in602

the scenes. We provide a detailed procedure and example of how we computed these edit603
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Figure 6
(a) Generalization accuracy by number of objects per test scene. (b) Average dissimilarity
between self-generated scenes at different levels of aggregation. Error bars show standard
errors for subject means. (c) Average similarity matrices between initial example and self
generated scenes 2 to 8. See Appendix C for detailed procedure and similarity matrices
separated by component.

distances and break them down into their separate components in the Appendix C. The604

mean distance between any randomly selected pair of participant-generated scenes was605

M±SD= 3.67± 0.94. Taken as a whole, the scenes generated by children were more diverse606

than adults’ with average dissimilarity of 3.70± 0.14 compared to 3.63± 0.08,607

t(102) = 2.9, p = 0.0048.608

However, this diversity seems to be primarily between rather than within subject for609

children’s choices. Within subject but across trials, the average inter-scene dissimilarity for610

children was 3.60± .33 similar to that for adults’ 3.65± .22, t(102) = .83, p = .4. Focusing611

more narrowly, within the scenes produced by an individual subject while learning about a612

single rule, we see a reversal of the aggregate pattern. That is, within a learning task,613

children’s scenes are marginally less diverse on average than adults’ (children: 3.30±0.459,614
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adults: 3.44±0.33, t(102) = 1.77, p = 0.08, Figure 6b&c).615

Figure 6c breaks down the within-trial scene dissimilarity by test position for the616

two agegroups. Adults’ scenes are clearly anchored to the initial example (right hand617

facet)—shown by the dark shading in the top row indicating high similarity decreasing from618

left to right for later tests—Adults’ scenes also look sequentially self-similar—shown by the619

relatively darker shading along the diagonal compared to the off-diagonal. In contrast,620

children’s similarity patterns look more uniform. However, for both adults and children,621

the first self-generated scene is more similar to the initial example than any other scene.622

Interim Discussion623

In sum, in our experiment we found children were only moderately less able to come624

up with rules that fit the evidence than adults and there were only moderate differences in625

the compatibility between children’s and adults’ rules and their subsequent generalizations.626

Most striking was the fact that children’s guesses appeared to overfit the evidence more,627

producing more complex, perhaps more naïve, characterizations of the rule-following scenes628

than did adults. This can be seen in the larger number of quantifiers and relations629

mentioned in children’s rules than in adults’, essentially referring to more different objects630

and more complex properties of the learning scenes that were actually irrelevant to their631

label. As well as generating more complex concepts, children created more complex test632

scenes that appeared to be more repetitive overall, yet also appeared to be varied less633

systematically than adults’.634

Model comparison635

To explore the basis for the diversity of guesses and generalizations, and of the636

differences between children and adults’ learning, we now turn to model-based637

characterization of the behavioral data. We focus first on the guesses, then the638

generalizations, and finally the scene creation. We will assess whether participants guess639

and generalization patterns are better captured by Bayesian inference over samples from an640

expressive latent prior—Probabilistic Context Free Generation (PCFG)—or rather by the641

partially bottom-up generation—Instance Driven Generation (IDG) limited to hypotheses642

inspired by patterns in scenes (Bramley et al., 2018). We then assess whether new scenes643

are better captured as independently generated—consistent with uncertainty-driven or644

exploration-driven testing—or as adaptations of earlier scenes— consistent with645

confirmatory or iterative contrastive testing.646

To foreshadow, we find convergent evidence that both children’s and adults’ guesses647

are better accounted for by Instance Driven Generation (IDG) of hypotheses than by an648
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approximately normative Probabilistic Context Free Grammar (PCFG) norm. We then649

demonstrate that neither children’s nor adults’ generalizations can be explained by surface650

similarity between rule-following and generalization probe scenes, but that they are well651

predicted by the learners’ own symbolic guess. Finally, we show that almost all children’s652

and adults’ scenes are more likely to have been created by making simplifications and edits653

to either the previous or the initial scene—in line with hypothesis-driven confirmatory or654

contrastive testing—rather than being generated independently from scratch—consistent655

with uncertainty-driven or direct exploration of the data space.656

Guesses657

Participants produced a huge variety of guesses but despite this, these guesses were658

consistent with the majority of their evidence. Children’s guesses were more complex and a659

little less data-consistent on average than adults’. We now explore using PCFG and IDG660

sampling to produce similar guesses.661

We first assume a PCFG as a computational level framework and reverse engineer662

what production weights it requires to generate the kinds of guesses we see adults and663

children make. Next, we contrast the prior sample-based PCFG approach to rule664

generation with our proposed data-inspired IDG, showing that the IDG does a better job665

of capturing participants’ accuracy by problem type and agegroup and is also better able666

to produce the specific guesses made by the participants.667

Reverse engineering Childlike and Adultlike production weights668

Having encoded all the rule guesses from adults and children (in the section on Rule669

complexity and constituents), we created PCFG production weights that produce similar670

guesses as adults and children. To do this, we worked back from the observed counts for671

each rule element doing this separately for children’s and for adults’ guesses (see Appendix672

A). Of course, the guesses are samples from a range of different participants’ posteriors,673

since guesses were always based on some evidence. However, since this evidence differs674

dramatically between trials and across the rules we considered and scenes participants675

created, and since the structural elements of the grammar (booleans, quantifiers etc) are676

not tightly tied to scene-specifics, this still provides a helpful elucidation of generation677

differences behind child-like and adult-like guesses. A full set of fitted prior weights for678

both adults and children are visualized in Figure 7. This analysis simply demonstrates that679

a natural way to understand children’s guesses are as emanating from a less fine-tuned680

generation mechanism adults’, with flatter, more entropic branching at 12 of the 14 forking681

production steps we assumed in our PCFG model. Indeed probability distibution over682
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productions at each stage averaged 1.28± 0.50 bits for children compared to 1.03± 0.59683

bits for adults, t(13) = 3.2, p = 0.007.684
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Figure 7
Visualization of (a) child-like and (b) adult-like PCFGs, reverse engineered to produce rules
with empirical frequencies matched to children’s and adults’ guesses. A rule is produced by
following arrows from “Start” according to their probabilities (line weights and annotation),
replacing the capital letters with the syntax fragment at the arrow’s target and repeating
until termination.

Modeling accuracy by participant and rule685

We now compare participants patterns of accuracy to simulated approximately
normative inference over a PCFG-generated sample and IDG hypothesis generation
algorithms provided with the active learning data generated by the human participants.
We generated a sample of 10,000 hypotheses based on uniform production weights ĤPCFGu,
and similarly for the IDG generated a sample based on uniform productions for each task
Ĥp,t

IDGu. Additionally, for each participant p—and separately for each learning task t in the
case of the IDG—we generated another 10,000 possible rules using age-consistent prior
production weights derived above Ĥp

PCFGh and Ĥp,t
IDGh that have statistics matched to those

in Figure 4a–f.7 The PCFG samples act as an approximation to an infinite latent prior over
rules P (h) before seeing any data. The uniform-weight PCFG samples capture a generic
inductive bias for simpler hypotheses while fitted held-out child- and adult-like weights

7 For these, we held out the subjects own guesses when setting the weights to avoid double dipping the
data.
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additionally attempt to capture “learned” inductive biases common to the requisite
age-group (but not specific to the participant). The IDG samples are additionally
idiosyncratically constrained in the sense of only reflecting rules referring to features or
relations actually present in at least one of the learning scenes. We split the IDG sample
evenly across tests such that 1250 were “inspired” by each learning scene, necessarily
repeating this procedure for each trial for each participant since each generates different
evidence. In order to approximate a posterior over rules given self-generated learning
scenes d, we then weighted these samples by their likelihood of producing all eight scene
labels l observed during the learning phase

P (h|l; d) ∝ P (l|h; d)P (h) (1)

≈ P (l|h; d)
∑
ĥ∈Ĥ

I(h = h) (2)

and combined this with their prior weight—given by counting how often they appear in the686

prior sample, with indicator function I(.) denoting exact or semantic equivalence. To test687

for semantic equivalence, we computed predictions for the first 1000 participant-generated688

scenes for each rule and clustered together those that made identical predictions. We689

rounded positional features to one decimal place in evaluating rules to accommodate690

perceptual uncertainty. Concretely, we assumed the following likelihood function691

P (l = 1|h; d) ∝ exp(−b×Nmispredictions) (3)

embodying the idea that: the more learning scene labels a rule cannot explain, the692

less likely it is to have produced them. For a large b, the likelihood function approaches the693

true deterministic behavior of the rules. However, in our analyses we simply assume a b = 2694

to allow for some noise while maintaining computational tractability. This corresponds to a695

likelihood function that decays rapidly from ∝ 1 for rules that predict all 8 scenes’ labels,696

to ∝ .13 for a single misprediction, and ∝ .02 for 2 mispredictions, and so on.697

To generate IDG predictions, we merged the production probabilities from the698

PCFG into the Instance Driven Generation procedure detailed in the Appendix A. For699

scenes that did not follow the rule we followed the same procedure as for scenes that did,700

but wrapped the rule in a negation. For example, observing a non-rule-following scene in701

which there are objects in contact might inspire the rule that “no cones are touching”.702

The resulting model guess accuracy is shown visualized in Figure 5a. We distinguish703

between two possible decision mechanisms: (1) Taking the maximum a posteriori (MAP)704

estimate from a large posterior sample (guessing in the event of ties), which we take as705
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closer to a normative ideal and (2) taking the accuracy of a single posterior sample, which706

we take to be more consistent with the best-case-scenario output of a process in which a707

given learner searches over hypotheses driven by a combination of prior complexity and fit.708

Under all models, the MAP lines up with the correct hypothesis more often than709

participants do (15–37% based on children’s active learning and 20–51% based on adults’,710

recalling that children guessed correctly of 11% of trials and adults on 28% of trials). For711

instance, under a uniform-weighted prior sample, the PCFG MAP is correct on 15% of all712

children’s trials and 20% of all adults’ trials. Note that since these simulations use the713

same prior sample, the small differences we see are due to the different learning data714

generated by children and adults. However, accuracy improves substantially and better715

reproduces the empirical child–adult accuracy difference when we use samples based on716

reverse-engineered weights that reproduce the qualitative properties of other participants in717

the same agegroup (see Appendix A and Figure 7). For age-appropriate prior samples, the718

PCFG guesses correctly on 18% of children’s trials and 32% of adults’ trials. Using an719

age-inappropriate “flipped” prior sample (i.e. child-like weights for adults and adult-like720

weights for children) obliterates this difference, resulting in 23% for children and 22% for721

adults. We see a similar pattern for the IDG algorithm, but higher accuracy across the722

board. The IDG achieves the best accuracy on both children’s and adults’ trials, guessing723

over half of the hidden rules correctly (51%) in the case of adults’ trials. However,724

achieving this level requires maximizing over the full sample, while we have argued that725

process level accounts are more likely to yield behavior closer to posterior sampling726

(Table 2, right hand columns). Indeed posterior samples provide a visually closer fit to the727

by-rule guess rates (Figure 5a).728

To check what provides the better account of participants trial-by-trial accuracy729

patterns we fit logistic mixed-effect regression models using the response under each730

algorithm and prior combination to predict each participant’s by-task probability of731

guessing correctly, including random effects for both rule type and participant. For the732

maximization models, we softmaxed the posterior with a low “temperature” parameter733

(τ = 1/500, Luce, 1959), meaning predictions were close to 1 or 0 excepting where multiple734

hypotheses were tied, where they were close to 1/N for the N tied hypotheses. The “Fit”735

columns of Table 2 shows the log likelihood for each of these models, revealing that736

participants’ correct judgments most in line with posterior sampling under an IDG prior,737

with age-appropriate production weights (log likelihood = 211.5,738

β = 5.44± 1.74, Z = 5.99, p < .001) improving over a baseline fit of -234.3 for a model with739

only intercept and random effects.740
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Table 2
Accuracy of Rule Guesses by Simulation Models

Accuracy MAP (%) Accuracy Posterior Sample (%)
Algorithm Prior Children’s

data
Adults’
data

Fit Children’s
data

Adults’
data

Fit

PCFG Uniform 14± 16 20± 14 -229 9±5 12±5 -226
PCFG Agegroup 17± 17 32± 15 -230 11±7 20±7 -225
PCFG Flipped 22± 20 22± 15 -231 15±9 15±6 -229
IDG Uniform 26± 22 39± 21 -226 9±5 14±6 -217
IDG Agegroup 36± 25 51± 18 -226 14± 8 24± 8 -212
IDG Flipped 26± 20 52± 18 -230 13±8 23±8 -223

“Children” and “Adults” columns show the M ± SD% by-subject accuracy of the requisite
algorithm. “Fit” shows the log likelihood for a logistic mixed-effects regression using model
accuracy to predict if the participant guesses correctly on each trial.

Modeling rule guess741

As a more direct test of the constructivist PCFG and IDG models’ ability to explain742

participants’ free response guesses, we also attempted to estimate the probability of each743

approach generating exactly the participant’s encoded guess based on their active learning744

data.745

By definition, all 87% of trials in which participant gave an unambiguous rule, we746

were able to encode in our concept grammar, so all have nonzero support under a PCFG747

prior. Due to the stochasticity we assumed in our likelihood function, all possibilities also748

nonzero have posterior probability, meaning they are guaranteed to appear in a sufficiently749

large PCFG sample.8 However, in practice it is impossible to cover an infinite space of750

discrete possibilities with a finite set of samples, meaning there are a substantial number of751

cases in which we did not generate the participants’ guess. The proportion of rules that752

were generated at least once in 10,000 samples with agegroup fitted weights was highest for753

the IDG with fitted weights (69% for children 76% for adults), decreasing to 49% and 62%754

using uniform weights. This was still higher than for the PCFG which generated 42% for755

children’s and 53% for adults’ guesses with the fitted prior weights and 45% for children’s756

and 50% for adults’ rules from a uniform prior.757

Table 3 details model fits to participants’ guesses. The IDG is again the stronger758

hypothesis generation candidate, assigning higher probabilities on average to the rules that759

8 They would not necessarily appear in an infinitely large IDG sample because many of the more complex
concepts are merely possible without being positively present. For example “there is a red and fewer than
five small blues” is consistent with the Figure 1b but would never be generated by the IDG procedure
inspired by these scenes.
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Table 3
Model Probability of Producing Participants’ Exact Rule Guesses

Children Adults
Algorithm Prior Mean (%) N best Mean (%) N best
PCFG Uniform 3.3± 5.0 13 7.2± 7.2 10
PCFG Agegroup 4.3± 7.4 13 12.5± 12.0 15
IDG Uniform 3.4± 5.1 10 8.7± 8.6 2
IDG Agegroup 4.5± 7.1 15 14.1± 13.6 22

Note: N best columns show the number of participants in each agegroup best fit by each
model.

participants provided. As expected, the variants of the PCFG and IDG with760

agegroup-consistent production weights were better aligned with participants’ guesses than761

variants with uniform (or mismatched) weights. However, all models produced adults’762

guesses with a much higher probability than children’s guesses.763

Figure 8a additionally visualizes participants’ guesses in terms of their posterior764

probability under PCFG and IDG sampling and compares this to what we would expect if765

guesses are samples from the posterior (black line), the result of finding the maximum a766

posteriori guess of the 10,000 considered hypotheses (dashed line) or else are simply767

samples from the prior (dotted line). This visualization shows that, under all the models768

we consider, adults’ guesses are distributionally more consistent with posterior sampling769

than posterior maximization, while children’s appear somewhere between prior and770

posterior sampling.771

To better understand why we were not able to generate all of participants guesses,772

we also examined those frequently generated by the models and contrasted these with those773

never generated under any of our model variants. Table 4 shows two examples of each for774

children and adults and the full set is available in the Online Repository. Unsurprisingly,775

the participant guesses our models failed to generate tended to have more complex forms776

and a concomitantly low generation probability. Assuming uniform weights, the syntax of777

the children’s guesses that we did generate had marginally higher log prior generation778

probabilities Median (Inter-Quartile Range) -10.2 (5.0) than those we didn’t were unable to779

generate -13.9 (16.31) (Mood’s median test, Z = 1.9, p = 0.053). For adults this difference780

was more pronounced -9.9 (5.0) compared to -14.9 (14.0) (Mood’s median test,781

Z = 4.5, p =< .001).9 This examination revealed that one class of rules our participants782

9 Note that these prior generation probabilities are a lower bound on the chance of of generating a
particular semantic rule since many syntactic forms can express the same semantic content (Fränken et al.,
2022). This captures why some relatively frequently generated semantic classes of guess nevertheless had a
low probability for each specific syntactic expression .

https://github.com/bramleyccslab/computational_constructivism


ACTIVE INDUCTIVE INFERENCE IN CHILDREN AND ADULTS 32

Table 4
Example Guesses

Agegroup Rule Example syntax log Prior
Uniform

log Prior
Age-
group

log(Likelihood)N/10k

Children “One is on top of the
other”

∃(λx1 : ∃(λx2 : Γ(x1, x2, stacked),X ),X ) -9.5 -8.4 0 117

Children “Only different colors ∀(λx1 : ∀(λx2 : ∨(= (x1, x2, ID),¬(=
(x1, x2, color))), X ),X )

-9.8 -8.0 0 260

Adults “If there are multiple
small blocks.”

N≥(λx1 := (x1, 1, size), 2,X ) -9.9 -19.6 0 609

Adults “There is at least one
small green triangle.”

∃(λx1 : ∧(= (x1, green, color),=
(x1, 1, size)), X )

-13.8 -21.3 0 532

Children “They have to be with all
three different colors”

∃(λx1 : ∃(λx2 : ∃(λx3 : ∧(∧(=
(x1, red, color),= (x2, green, color)),=
(x3,blue, color)), X ),X ),X )

-22.3 -16.6 -2.0 0

Children “There has to be one
small blue piece and
there has to be more
than one piece”

∃(λx1 : N≥(λx2 : ∧(= (x1, 1, size),=
(x1,blue, color)), 2, X ),X )

-12.5 -11.3 0 0

Adults “When there is a cone
from each color of the
same size”

∃(λx1 : ∃(λx2 : ∃(λx3 : ∧(∧(∧(∧(=
(x1, red, color),= (x2, green, color)),=
(x3,blue, color)),= (x1, x2, size)),=
(x1, x3, size)), X ),X ),X )

-20.5 -11.11 -2.0 0

Adults “one piece has to be
leaning on another”

∃(λx1 : ∃(λx2 : ∧(Γ(x1, x2, contact),¬(=
(x2,upright, orientation))), X ),X )

-18.5 -21.3 -3.9 0

Note N/10k shows how many times we generated this rule in 10,000 samples assuming agegroup-specific weights and counting

any semantically equivalent expressions.

guessed but our models did not generate were those that could be expressed much concisely783

with more powerful logical grammar. For example, we saw a number of cases of universal784

quantification over feature values, such as “one of each color”, mentioned in both a child785

and an adult guess in Table 4. This kind of rule can be expressed parsimoniously in second786

order logic with a single universal quantifier over color properties while in our grammar it787

required a separate quantification for each color. The fact that children produced about as788

many apparently higher-order-logic rules as adults seems to suggest that the PCFG we789

assumed, despite its ostensively complex structure, is still a simplification of the basis from790

which children constructed their ideas (cf. Piantadosi et al., 2016).791

Generalizations792

We next examine our models’ ability to account for participant’s generalization793

performance. As with the guesses, we first examine patterns of accuracy by comparing794

participants to simulated constructivist PCFG and IDG learner benchmarks before fitting795

a range of models to the specific generalizations participants made.796
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Figure 8
a) Posterior probability of participants’ guesses under PCFG and IDG samples with
agegroup weights. Full black line compares with posterior samples, dashed line with selection
of the posterior maximum a posteriori hypothesis (or sampling from them if there are more
than one), dotted line compares with samples from the prior. b) Individual generalization
model fits showing BIC improvement over baseline per trial (higher is better). Opaque
points show mean±SE, faint points show individual fits, with triangles used to mark where
the model (of of the 17 blind to the symbolic guess) is the best fit for that participant.

Modeling generalization accuracy797

To do this, we use their requisite predictive distributions to model labelling
generalizations l∗ to the set of test scenes d∗

P (l∗|l; d,d∗) =
∫
H
P (l∗|H; d∗)P (H|l;d) dH (4)

≈
∑
h∈Ĥ

P (l∗|h; d∗)P (h|l; d) (5)

Provided with the active learning data generated by the human participants, both798

performed in the human range at generalization. As with predicting the guesses, taking the799

marginally most likely generalization labels over a posterior weighted sample of800

agegroup-appropriate IDG prior productions performed best overall and reproduced the801

difference between children’s and adults’ generalization accuracies (68.8±20.1% and802

74.2%±21.7%). The uniform-production IDG still performed slightly better than the803

PCFG, generalizing at 65.2%±19.3% from children’s active learning data and804

69.0%±21.0% from adults’. Using agegroup-appropriate priors, the PCFG also reproduces805

the empirical difference between children’s and adults’ accuracy: 62.8±19.8% for children’s806
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trials and 68.8±20.9% for adults’trials. Using the PCFG with uniform production weights807

yielded accuracies of 61.4%±19.6% for children’s and 63.5%±20% for adults’ data.808

The stronger generalizations of the IDG compared to the PCFG replicates the809

findings of Bramley et al. (2018) and extends this to children as well as adults. Intuitively,810

this is because the bottom-up inspiration mechanism ties the hypotheses generated to811

features of the learning cases, effectively narrowing in on plausible hypotheses more812

efficiently. More broadly, these simulation results underscore the inherent difficulty of this813

task in particular and open-ended inductive inference in general. The PCFG and IDG were814

not statistically better or worse than participants at any rule inference after Bonferroni815

correction with the exception that the IDG outperformed children on rule 4816

t(96) = 4.7, p < .0001. Thus strikingly, even in this “small world” with known and fully817

observed features, and even allowing simulations to sample and maximize over implausibly818

large numbers of hypotheses, we could not robustly outperform human adults in this819

task.10 This also reveals that building in human inductive biases boosts generalization820

performance (cf Lake et al., 2017) and the idea that adults’ have formed stronger inductive821

biases than children goes some way to explain differences in how they generalize.822

A complicating factor is that children generated different learning data to adults.823

However, our PCFG and IDG simulations suggest exposure to different data cannot explain824

most of the accuracy differences between children and adults. Using identical production825

weights and the scenes generated by adults and children led to only small differences in826

accuracy for the PCFG and moderate for the IDG, while using a “flatter” set of productions827

fit to match childlike rules, and a more “peaked” set fit to adults’ rules, better reproduces828

the accuracy differences. We take this to suggest hypothesis construction differences drive829

a large portion of the differences in children’s and adult’s inductive inferences.830

Modeling specific generalizations831

A standard benchmark for models of concept learning is a fit with participants’832

generalizations to new exemplars. Thus, we compared a range of models’ ability to account833

for participant’s specific generalizations. The set of models we consider allows us to test834

our core claims that children’s and adults’ induced representations are symbolic and835

compositional, as opposed to statistical and similarity-based.836

We fit a total of 18 models to the generalization data. All models had between 0837

10 It is likely that other approximate inference methods, such as an MCMC or greedy posterior search
approach, could improve on this sample efficiency. However they also introduce other challenges for the
learner (i.e. escaping local minima) and the modeler (getting good coverage of the response space and
aggregating auto-correlated samples).
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and 2 parameters. For each model, we fit the parameter(s) by maximizing the model’s838

likelihood of producing the participant data, using R’s optim function. We compared839

models using the Bayesian Information Criterion (Schwarz, 1978) to accommodate their840

different numbers of fitted parameters.841

The models we fit were:842

1. Baseline. Simply assigns a likelihood of .5 to each generalization ∈ {rule843

following, not rule following} for each of the 8 generalization probes for each of the 5844

learning trials.845

2. Bias. Acts a stronger baseline by allowing participants to have an overall bias846

toward or against selecting generalization scenes as rule following. For this model, b847

= 1 if >50% of generalizations predict the scene is rule following and 0 otherwise.848

The model is fit using a mixture parameter λ to mix this modal prediction with the849

baseline prediction of .5 P (choice) = λb+ (1− λ).5.850

3-8. PCFG {Uniform, Flipped, Agegroup} {No Bias, Bias}. These models851

base their generalizations on the marginal likelihood that each generalization scene is852

rule following under the Probabilistic Context Free Generation (PCFG) posterior853

r = PPCFG(l ∗ |l; d,d∗). “Uniform” uses a prior with uniform production weights.854

“Flipped” uses a prior generated with mismatched weights —- that is, adultlike855

weights for children’s generalizations and childlike weights for adults’ generalizations.856

“Agegroup” uses a sample based on weights derived from other participants in the857

same agegroup holding out the participants’ own guesses. In each case, these858

predictions are then softmaxed using P (choice) = er/τ∑
r∈R e

r/τ ,with temperature859

parameter τ ∈ (0,∞) (Luce, 1959) optimized to maximize model likelihood. Large860

positive τ indicates random selection. τ → 0 indicates hard maximization. Variants861

with a bias term also mix this prediction with the subject’s modal response b as in862

P (choice) = λb+ (1− λ) er/τ∑
r∈R er/τ

. (6)

9-14. IDG {Uniform, Flipped, Agegroup} {No Bias, Bias}. These models use863

the marginal likelihood of each generalization scene as rule following under the864

Instance Driven Generation based posteriors with variants as with the PCFG variants865

and again fit with softmax parameter τ ∈ (0,∞).866

15-16. Similarity {No Bias, Bias}. Inspired by Tversky’s statistical and867

similarity based contrast model of categorization (cf., Tversky, 1977), we used the868
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inter-scene similarity between each generalization scene and each training scene to869

compute the relative average similarity of each generalization case to the870

rule-following vs. the not rule-following training scenes. Similarities were computed871

using the same procedure used in the Active Learning section of the Results and872

detailed in Appendix C. We computed the mean difference between rule-following873

and not-rule following similarities as a ∆Similarity score for each874

participant×trial×item combination. Positive scores mean generalization item has a875

greater feature similarity to the rule following learning scenes than the not876

rule-following learning scenes. Negative scores mean the reverse. To convert these877

into choice probabilities, we take a logistic function of these scores r = e∆Similarity

e∆Similarity+1878

and again fit these r values to maximize the likelihood of participants’ choices using a879

softmax function with inverse temperature parameter τ ∈ (0,∞). Intuitively, this880

model provides a non-symbolic alternative account of generalization behavior.881

17-18. Symbolic Guess {No Bias, Bias}. This model takes participants’ free882

guess of the hidden rule, coded in lambda abstraction, and uses these directly to883

generate a prediction vector r ∈ R :{rule-following=1, not rule-following=0} for each884

scene. For trials in which the participant does not provide an unambiguous rule, the885

model assigns a .5 likelihood to each generalization choice. These were again fit with886

a softmax parameter τ ∈ (0,∞).887

A good fit for Symbolic Guess would support our core claim that participants888

inductive generalizations are directly driven by their constructed symbolic ideas.889

Meanwhile, a better fit for Similarity would suggest that generalizations are rather based890

on sub-symbolic feature similarity, with participants guesses relegated to a supporting role891

as rough symbolic re-descriptions of an ultimately sub-symbolic representation (e.g.,892

Dennett, 1991; Johansson, Hall, & Sikström, 2008). To the extent that our constructivist893

simulations reflect participants’ inductive inference mechanisms we expect the end-to-end894

PFG and IDG mdoels to also capture generalization patterns even though they are blind to895

the individual participants’ explicit guesses. This also acts as a sanity check for our896

approach for any readers skeptical about the validity of self-report data.897

We fit all models to the children’s and adults’ data, and then separately to each898

individual participant. The full table of model fits is presented in the Appendix899

(Table A-3). Individual level results are highlighted in Figure 8b. At the individual level,900

the PCFG+Bias and IDG+Bias models performed no better than the unbiased PCFG or901

IDG models, thus we omit these from Figure 8b for simplicity.902

In line with our core hypothesis, Symbolic guess + Bias is the best fitting model of903
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both children’s and adults’ generalizations outperforming all the models we considered904

based just on only the learning data. For children’s generalizations taken together,905

Symbolic guess + Bias has BIC 2149, improving 490 over Baseline with bias term mixture906

weight of λ = .26 and choice temperature parameter τ = 0.80. For adults, this is BIC 1776907

with a larger BIC improvement of 996 over Baseline, with a λ = 0.08 indicating less bias908

and temperature τ = 0.50 indicating tighter alignment with the guessed-rule’s predictions.909

Probing this bias, we see children undergeneralized substantially on average, selecting just910

2.75± 1.42/8 scenes compared to adults’ 3.42± 1.03/8 (unknown to the participants, there911

were always 4 rule following generalization scenes). Focusing on individual fits, the picture912

is mixed for children’s generalizations, with 16/50 best fit by the Bias only model, followed913

by 15 by the Symbolic guess model, 9 by the Symbolic Guess + Bias model and a further 7914

by the fully random Baseline. No other model best fit more than 2 children. For adults,915

32/52 were best fit by Symbolic guess, 6 by Bias, 4 by Symbolic guess + Bias and no other916

model best fit more than 2 participants.917

If we restrict our comparison to models blind to the participant’s symbolic guess918

then the IDG with the Agegroup-derived prior is the best fitting model for both children919

and adults. In this set, at the individual level, IDG Agegroup best fits the most adults920

(15/50), with 28/50 best fit by one of the IDG variants, compared to 6/50 by a PCFG921

variant and 5/50 by a Similarity model. The majority of children were better fit by Bias922

(25/54) or Baseline (13/54), but of the 16 individually better fit by one of the inference923

models, 11 were best captured by an IDG variant, 3 by a PCFG variant and 2 by a924

similarity variant (see triangles in Figure 8b and Appendix Table A-3).925

Overall, children’s generalizations were much harder to predict than adults’ with926

end-to-end constructivist accounts of their generalizations performing close to Baseline.927

This is partly to be expected since our child-like construction weights inherently produce a928

very diverse set of guesses and correspondingly diffuse set of generalization predictions.929

However, conditioning on Children’s symbolic guesses we were able to predict their930

generalizations far better than by Similarity, Bias or any other model we considered.931

Adults’ generalizations seem more straightforwardly driven by their symbolic guesses, with932

better individual fits on average using their guess directly without adjusting by any bias933

toward or against predicting scenes to be rule-following. This makes sense: with a clear934

hypothesis in mind, there is little rationale to select more or fewer than the generalization935

scenes consistent with that rule.936

As with the free rule guesses, the IDG was robustly more aligned with participants’937

generalizations than the PCFG, particularly for adults, and particularly when using938

agegroup-appropriate weights rather than Uniform or age-inappropriate Flipped939
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production weights. Thus, this model comparison also supports the idea that participants940

were inspired by patterns present in the learning data, such as the objects and relations in941

the initial positive example. However, this does not appear to be a developmental942

difference per se, with both children’s and adults’ judgments better accounted for by the943

IDG than our PCFG algorithm across all analyses.944

These results support a key aspect of the constructivist framework, participant’s945

idiosyncratic symbolic guesses seem to do the work in driving generalizations, rather than946

these being driven by family resemblance in the features of the scenes. The constructivist947

account anticipates that generalization patterns are dependent on what concept the learner948

has arrived at by the end of learning, and our end-to-end models of this process949

demonstrate the sheer breadth of concepts that learners can reasonably end up with in this950

task.951

Scene generation952

We finally turn to participants’ scene generation. We compare participants953

generated scenes to several benchmarks before comparing a set of models of scene954

generation to test the idea that participants adapted earlier scenes to isolate and test the955

role of features mentioned in their hypotheses.956

Comparison with information norms957

According to an information gain analysis, children’s and adults’ scene generation958

result in some differences in the quality of the total evidence generated. For example, using959

the unweighted PCFG sample, prior entropy is 7.74 bits and children’s evidence produces960

an information gain (reduction in uncertainty) of 1.93±0.45 bits while adults’ data average961

an information gain of 2.11±0.38 bits t(102) = 2.12, p = 0.035 (see Figure 9). Relative to962

the agegroup-fitted PCFG priors, the difference in information gains is rather larger, with963

children’s scenes leading to information gain at 2.28±0.66 bits (prior entropy 7.87±0.05),964

and adults’ at 2.96±0.64 (prior entropy 7.77±0.04) t(102) = 5.3, p < .0001. Under the965

flipped priors—that is, taking the adultlike PCFG prior for children and childlike PCFG966

prior for adults—children’s tests look more informative than under their own prior,967

generating 2.58±0.68 bits, and adults’ tests slightly less informative than under their own968

prior 2.55±0.57 bits, eliminating the statistical difference t(102) = 0.24, p = 0.81. On the969

face of it, this is evidence against the idea that children’s more elaborate hypothesis970

generation and concomitantly flatter construction weights are driving them rationally971

toward more elaborate testing choices. However, as we noted information-theoretic972

analyses as limited in what can reveal. It is predicated on an implausibly complete973
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Uncertainty reduction under different priors. Triangles = random scene selection. Circles
= greedy expected information maximizing scene selection. “+” symbols = Ideal teaching
scenes.

representation of uncertainty that we approximated by using a large sample of prior974

hypotheses, while we have characterized constructivist learning as driven by more focal975

testing of a handful of similar possibilities.976

We also compared participants against three scene selection benchmarks. In977

Figure 9, black triangles show the reduction in uncertainty resulting from supplementing978

the initial example with 7 scenes selected at random from from among participant979

generated scenes. Circles show the result of repeatedly selecting from a sample of 1000 of980

the participant-generated scenes, greedily selecting whichever one maximizes the expected981

information gain with respect to the prior at that test. Plus symbols show the reduction in982

uncertainty resulting from observing scenes selected by an ideal teacher—i.e. the seven983

scenes that, in combination with the initial example, best reveal the true concept.11 One984

striking feature of these benchmarks is the low performance of the uncertainty-driven norm985

under all PCFG priors. Expected information gain slightly outperforms participants and986

random selection assuming the agegroup priors, but is actually worse than random scene987

selection under a flat uniform prior sample. This poor performance stems from the fact988

that the prior space of hypotheses is just so large and symmetric, making most scenes989

similarly informative at first. Furthermore, a large class of PCFG hypotheses predict that990

11 We selected these by generating 10,000 sets of seven scenes for each rule, and selecting the set that best
reduced entropy.
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all possible scenes will be rule following, or that all possible scenes will be non-rule991

following. These hypotheses are incorrect and rarely entertained by participants, yet have992

an outsized effect on the greedy selection of scenes that maximize expected information993

gain. Scenes selected to maximally convey each concept are far more informative,994

highlighting gulf between self-teaching and optimal teaching in inductive settings.995

Figure 10 compares an example scene sequence selected by a child and an adult996

against a random selection from all participant scenes, uncertainty-driven selection and997

those selected to maximally convey the concept. This visual comparison highlights how998

human scene selection involves recognizable repetition and patterning that look quite999

unlike random and uncertainty-driven selection. In particular, several of the scenes selected1000

to minimize expected uncertainty are very complex compared to participants’ selections.1001

Theoretically uncertainty driven scenes do an excellent job of dividing the hypothesis1002

space, shown by their ceiling-level EIG (Figure 10f). However, since the target rule in this1003

case turns out to be a simple, this sophistication does not benefit the uncertainty-driven1004

learner overall (Figure 10g).1005

Models of scene selection1006

We hypothesized participants might adopt incremental hypothesis-driven testing1007

strategies to deal with the challenges of the inductive setting. We suggested this might1008

involve testing nearby confirmatory generalizations of a focal hypothesis (Klayman & Ha,1009

1989), or contrasting nearby variants to this hypothesis (Oaksford & Chater, 1994). In1010

either case, we argued this would result in patterns of similarity (retention of rule-critical1011

elements and creation of minimal contrast pairs) and simplification (removal of non-rule1012

critical elements) quite distinct from the predictions of information-driven or1013

uncertainty-driven testing. We indeed observed anchoring within learning problems. In1014

particular, participants scenes appeared to be anchored both persistently to the initial1015

positive example and sequentially (Figure 6c). We here operationalize this by creating a1016

family of scene adaptation models that assume learners create new scenes by mutating1017

either the initial positive example, or their own previous scene. We compare these against1018

baselines that rather assume learners generate each new scene from scratch. Concretely,1019

the models we fit were:1020

1. Generate {Uniform}: Adds a random number of objects to each scene. Uniform1021

assumes each object uniformly selected features (color, size, orientation and1022

groundedness)12. This model has zero fitted parameters so acts as an overall baseline.1023

12 We do not attempt to predict the relational features or absolute positions in this analysis.
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Example sequences for the “There is a red” problem. a) A child’s scenes b) An adult’s
scenes c) Random selection from all participant generated scenes d) Uncertainty driven
selection from all participant scenes e) Optimal scene selection for communicating the
concept. f) Expected Information Gain and g) achieved uncertainty reduction for sequences
in a–e.

Otherwise with this and all subsequent models we assumed each feature was sampled1024

from its mean prevalence to act as a stronger baseline.1025

2. Generate Simple: Adds a number objects to each scene drawn from an exponential1026

distribution (truncated to the maximum allowable number of objects) with fitted rate1027

parameter λ, selecting the features of these objects at random. This models a1028

tendency to create simple scenes containing fewer objects, with the mean number of1029

objects per generated scene given by 1
λ
.1030

3. Adapt Initial {Simple}: Assumes the learner creates each new scene by adapting1031

the initial scene. Concretely, we assume the learner samples either the same number1032

of objects as in the initial scene with probability η, or a random number with1033
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probability 1− η. The objects in new scene are assumed to be a mixture of the1034

features of the matching object in the initial scene (replicating the original feature1035

with probability η) or selected randomly from their support (with probability 1− η).1036

We marginalize over all possible object mappings between scene i and j.η = 11037

corresponds to perfectly reliable copying of the number and nature while η = 01038

denotes always resampling the feature. The simple variant assumes the number of1039

objects in the scene, if not drawn from the inspiration scene, is drawn from an1040

exponential distribution with parameter λ as above.1041

4. Adapt Previous {Simple}: This model works as above but uses the preceding1042

scene rather than the initial scene as its starting point.1043

5. Adapt Mixed {Simple}: This model simply mixes the predictions of Adapt Initial1044

and Adapt Previous to capture the behavior of a learner who sometimes adapts the1045

initial scene (with probability θ) or by their own preceding scene with probability1046

(1− θ).1047

We fit the models to each agegroup, and separately every individual participant (see1048

Appendix B for details). Table 5 shows the resulting agregroup-level BICs the number of1049

individuals best fit by each model and the spread of parameter values for each. Adapt1050

Mixed Simple was the best model for both agegroups overall and the best model for 48% of1051

children and 38% of adults. No participant was better fit by Generate or Generate Simple,1052

capturing that every single participant exhibited some degree of positive anchoring on the1053

number or nature of the earlier scenes. 80% of children and 96% of adults additionally1054

showed an additional preference for simple scenes. Almost half of adults (48%) were best1055

characterized as adapting the previous scene than repeatedly adapting the initial scene or a1056

mixture of both while this was only true for 19% of children. Fitted simplicity rate λ was1057

larger for adults (≈ 0.5) than children (≈ 0.3) capturing their stronger tendency to create1058

scenes with fewer objects. Fidelity of copying features of inspiration scenes η was similar1059

for children and adults (≈ .3). Note that this is an underestimate due to the need to1060

marginalize over many possible object-object mappings and two potential inspiration1061

scenes. Mixture parameter θ was below .5 on average for both children and adults1062

suggesting dominance of the initial scene over the previous scene.1063

In sum, this model comparison supports the idea that learners adapted their earlier1064

tests often retaining the same number of objects and tending to keep many of the same1065

features. Adults were more likely than children to reduce the number of objects and had1066

more tendency to adapt sequentially, gradually traveling further away from the initial1067

example.1068
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Table 5
Models of Scene Generation

Children
Model BIC/scene N Best λ η θ

Generate Uniform 40.2 0
Generate 34.9 0
Generate Simple 30.7 0 0.34± 0.1
Adapt Initial 30.4 2 .29± .19
Adapt Previous 30.1 8 .25± .18
Adapt Mixed 30.0 1 .27± .19 .40± .29
Adapt Initial Simple 29.3 7 0.33± 0.11 .34± .16
Adapt Previous Simple 29.0 10 0.34± 0.13 .31± .17
Adapt Mixed Simple 28.7 26 0.34± 0.12 .33± .17 .40± .24

Adults
Model BIC/scene N Best λ η θ

Generate Uniform 32.8 0
Generate 27.8 0
Generate Simple 23.1 0 0.50± 0.18
Adapt Initial 23.6 0 .23± .14
Adapt Previous 23.4 1 .21± .13
Adapt Mixed 23.3 1 .21± .13 .35± .26
Adapt Initial Simple 22.4 5 0.50± 0.20 .29± .12
Adapt Previous Simple 21.9 24 0.54± 0.30 .23± .13
Adapt Mixed Simple 21.8 19 0.54± 0.27 .24± .13 .32± .25

Note: BIC/scene shows the fit of the model at the agegroup level divided by the number of
scenes for easier comparison. λ (simplicity), η (fidelity) and θ (mixture) show M ± SD of
best fitting model parameters variant across subjects. Boldface indicates the best fitting
model.

General Discussion1069

In this paper, we explored children and adults’ active hypothesis generation and1070

inductive inference in an interactive task where the space of possibilities and actions is1071

compositional, open and practically unbounded. Our results are rich and nuanced but1072

broadly we found that:1073

1. Children’s guesses and tests were more complex than those of adults.1074

2. We could synthesize the diversity and distribution of children and adults’ guesses1075

with a constructivist—symbolic, generative—inference framework, reproducing both1076

their sporadic correct guesses but also capturing the spread of their incorrect ideas1077



ACTIVE INDUCTIVE INFERENCE IN CHILDREN AND ADULTS 44

and offering a framework for modeling differences between children’s and adults’1078

inductive inference.1079

3. Children’s guesses reflected less fine-tuned construction mechanisms than adults’,1080

producing more diversity but were consequently less predictable.1081

4. Both children’s and adults’ hypothesis generation appeared data-inspired, shown by1082

better fit throughout our model-based analyses by our Instance Driven Generation1083

account—inspired by patterns in the learning scenes—over our approximately1084

normative (PCFG) account—that generated hypotheses a priori and weighted them1085

with the evidence.1086

5. The logical form of both children and adults’ symbolic guesses predicted their1087

generalizations to new scenes far better than feature similarity.1088

6. Both children and adults scenes generation seemed to involve modifying previous1089

scenes, with adults doing so more systematically and with more tendency to simplify1090

them.1091

We now discuss these results more broadly, first highlighting some limitations, then1092

expanding on what we see as the implications of this work for theories of concepts and of1093

development and finally pointing to some future directions.1094

Limitations1095

Experimental Control1096

While this task and new dataset provide an exceptionally rich window on inductive1097

inference, some of what is gained in open-endedness is lost in experimental control. There1098

is considerable residual ambiguity about the extent that differences in active learning1099

shaped differences in hypothesis generation and visa versa. One way to try and partial this1100

out could be to run more experiments that fix the evidence and probe the hypotheses1101

generated, or that fix the hypotheses in play and probe what evidence is sought. However,1102

we have argued that such constrained tasks run the risk of short-circuiting natural1103

cognition: Learners may struggle to test hypotheses they did not conceive themselves, and1104

are known to struggle to use data they have not generated to evaluate their hypotheses1105

(Markant & Gureckis, 2014; Sobel & Kushnir, 2006). Sole focus on scenarios fix one or1106

other aspect of the the inductive inference loop may provide a misleading perspective on1107

end-to-end active inference in the wild. We feel that our open ended task provides a1108

valuable complementary perspective. In future work hope, we plan to elicit more1109
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fine-grained online measures of learners’ thought process—e.g. asking them to list their1110

hypotheses after each guess or describe how they construct test scenes. This would support1111

comparison of process-level accounts of both hypothesis adaptation and active search and1112

allow identification of individual differences.1113

Theoretical Expressivity1114

There are many ways we could have set up the primitives, parameters and1115

productions of our PCFG and IDG models. This makes for a dangerously expressive set of1116

theories of cognition. We do not claim to have explored this space exhaustively here but1117

rather that our modeling lends support to the idea that some symbolic and compositional1118

process drives children and adults’ active inductive inferences about the world. That is, we1119

can explain the variability and productivity of human hypothesis belief formation in1120

symbolic terms. Identifying the computational primitives of thought may not be a realistic1121

empirical goal since a feature of constructivist accounts is their flexibility. Learners can1122

grow their concept grammar over time, caching new primitives that prove useful1123

(Piantadosi, 2021). Moreover, it is well known many different symbol systems can mimic1124

one another (Turing, 1937), meaning that expressivity alone cannot distinguish between1125

them. Since, we expect different learners to take different paths in an inherently stochastic1126

learning trajectory, this limits universal claims about representational content.1127

Feature selection1128

We assumed our scenes had directly observable features and cued these to1129

participants in our instructions. However, a number of recent models in machine learning1130

combine neural network methods for feature extraction with compositional engines for1131

symbolic inference, creating hybrid systems that can learn rules and solve problems from1132

raw inputs like natural images (cf. Nye, Solar-Lezama, Tenenbaum, & Lake, 2020; Valkov,1133

Chaudhari, Srivastava, Sutton, & Chaudhuri, 2018). We see these approaches as having1134

promise to bridge the gap between subsymbolic and symbolic cognitive processing.1135

Elicitation differences between children and adults1136

One potential concern is that the complexity of children’s guesses relative to adults1137

stems partly from their being collected verbally and in the presence of an experimenter1138

rather than typed during an online experiment. Speaking carries different cognitive1139

demands than typing and may lead to children simply responding in a more verbose way1140

than adults. While we cannot rule this out, we do not think this is a major concern.1141

Adults were well compensated for accuracy, meaning their motivation was primarily to be1142
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correct rather than brief. The semantic content of both children’s and adults’ rules were1143

extracted through our coding of them into lambda calculus meaning that surface1144

differences in concise expression can be separated from logical complexity. Furthermore1145

children’s guesses were not the only thing that was more elaborate about their behavior.1146

They were also more elaborate in their active testing choices, producing more complex1147

scenes despite having to create these in the same manner as adults. Since the testing1148

interface was reset on each trial, this complexity took more effort, with children’s scenes1149

requiring substantially more clicks and more time to produce than adults’.1150

Use of verbal protocols1151

Another worry about our use of free responses is that they rely on a capacity for1152

precise linguistic expression not to mention the assumption that learners have insight into1153

the structure of their own concepts. It is known that children’s vocabularies differ from1154

adults’, raising the concern that some of our results reflect language use rather than the1155

concepts being articulated. While our artificial environment contains only simple objects1156

and basic features that are familiar to even young children, there is evidence that children’s1157

speech does not distinguish as well among quantifier usage (e.g., all, each, every) until late1158

in childhood (Brooks & Braine, 1996; Inhelder & Piaget, 1958). Thus, it could be that1159

linguistic imprecision is behind some of the differences between children’s and adults’1160

guesses. For instance, this seems like a potential explanation for the lack of any exactly1161

correct guesses from children about the quantifier-dependent rule 4 “exactly one is blue”.1162

However, a closer look at responses reveals that only 11/47 children guessed a rule that1163

mentioned blue at all. Meanwhile 37/50 of adults’ rules mentioned blue, but all but seven1164

of these were wrong about the particulars of the quantification. In many cases other1165

potential quantifications were not ruled out by adults’ testing. For instance, several1166

subjects never tried adding more than one blue object to a scene and later responded that1167

at least one object must be blue. Thus, it seems that children’s rules simply picked out1168

different features of the scenes than adults. An interesting question is whether, in the cases1169

where a child’s guess is logically inconsistent with some of their learning data, this is1170

because their representation itself is imprecise, or because their verbal description1171

imprecisely describes their representation. Another possibility could be that adults are1172

better introspectors than children, better able to “read out” the structure of their own1173

representations (Morris, 2021). While these are intriguing possibilities our current1174

experiment cannot fully resolve these explanations.1175
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Implications for theories of concepts1176

Psychological theories of concepts have oscillated between symbolic accounts—that1177

seek to explain conceptual productivity and creativity—and similarity accounts—that seek1178

to explain how concepts drive probabilistic generalization. The constructivist framework is1179

based in the symbolic camp, however it inherits many of the advantages of similarity1180

accounts by maintaining a relationship with probabilistic inference embodied by the1181

stochastic mechanisms of generation and search. Thus, we see our findings as support for1182

recent claims that higher level cognition utilizes some form of stochastic generative1183

sampling to approximate rational inference (Bramley, Dayan, et al., 2017; Sanborn et al.,1184

2021; Zhu, Sanborn, & Chater, 2020) and that this might also explain aspects of human1185

cultural and technological development that take place over populations and multiple1186

generations (Krafft, Shmueli, Griffiths, Tenenbaum, et al., 2021).1187

While neither the PCFG or IDG are oven-ready process models of human concept1188

formation, they provide a useful starting point for thinking about process accounts. The1189

PCFG framework describes normative inference in the limit of infinite sampling, but also1190

provides a mechanism for both generating and adapting samples. The IDG is a hybrid that1191

seeds hypotheses by trying to describe patterns that are present in observations rather1192

than merely possible, making it more sample-efficient as a brute force approach to inference1193

in situations where a learner already has some positive or demonstrative evidence of a1194

concept. However its success is dependent on the learner generating or encountering scenes1195

that exemplify and isolate causally relevant features. With enough evidence both1196

approaches should favor the ground truth but with little evidence the PCFG will tend to1197

entertain many concepts that the IDG does not.1198

While the IDG captured the data better here, it is not a complete account because,1199

even with instance-inspired stating point, we still need to explain how a learner adapts in1200

light of new evidence. Following a number of recent research lines (Bramley, Mayrhofer,1201

Gerstenberg, & Lagnado, 2017; Dasgupta, Schulz, & Gershman, 2017; Ullman, Goodman,1202

& Tenenbaum, 2012), we see incremental mutation of one or a few focal hypotheses in the1203

light of evidence as a promising approach. For instance, a learner might use an observation1204

to generate an initial idea akin to our IDG, but then explore permutations to this to1205

generate new scenes to test (Oaksford & Chater, 1994), and to account for these tests1206

(Fränken et al., 2022). While older models like RULEX (Nosofsky & Palmeri, 1998;1207

Nosofsky et al., 1994) provide candidate heuristics for achieving such a search over theories,1208

their long run behavior lacks a clear relationship with computational-level rationality1209

(Navarro, 2005). However, if a learners’ adaptations approximate a valid approximation1210

scheme, for instance accepting proposed permutations with the Metropolis-Hastings1211
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probability max(1, P (h′)
P (ht)) (Bramley, Dayan, et al., 2017; Dasgupta et al., 2016; Hastings,1212

1970; Thaker et al., 2017), they can start to explain why more probable hypotheses are1213

discovered more often as well as explaining probability matching and order effects are1214

inevitable consequences of approximation (see Fränken et al., 2022). Since the endpoint of1215

an MCMC search approaches an independent posterior sample, we would expect a1216

population of such searchers to end up with a set of hypotheses that look like posterior1217

samples. Moreover, since individual searchers have finite time to search, we would expect1218

order effects and dependence in their ideas over time. To the extent that participants1219

deviate from a probabilistically valid approximation scheme, for instance “hill climbing” or1220

accepting only strictly better fitting ideas, we might also explain how they can get stuck in1221

local optima and exhibit mal-adaptive order effects like garden paths (Gelpi, Prystawski,1222

Lucas, & Buchsbaum, 2020). Taking the idea that earlier hypotheses carry information1223

about older evidence and inference, we might also think of a population of such hypotheses1224

as a kind of particle filter (Bramley, Dayan, et al., 2017; Daw & Courville, 2008). While1225

acting primarily as a computational level norm, the PCFG prior provides useful1226

infrastracture for hypothesis search. For example, prior production weights can be used to1227

adapt an existing hypothesis by partially “regrowing” it (Goodman et al., 2008).1228

Furthermore, prior production weights implied by a generative prior mechanism combined1229

data likelihoods allows for the principled acceptance or rejection of new proposals in an1230

MCMC-like search scheme. This could result in much greater sample efficiency than either1231

the PCFG or IDG presented here, and it would be interesting to consider combinations of1232

prior- or instance-driven initializations with permutation-based search. For this to become1233

a fully satisfying account of constructivist inference this would need to be paired with a1234

mechanism for scene generation in line with those we sketch in Figure 3c&d, so explaining1235

anchoring, order effects, probability matching and confirmation bias in a unified account1236

(Klahr & Dunbar, 1988).1237

Our modeling of generalizations revealed that there is no straightforward family1238

resemblance between the features of rule-following training scenes (generated by the1239

participant) and rule-following generalization scenes (as pre-selected for the experiment).1240

This resulted in the Similarity model performing at chance and also being completely1241

uncorrelated with participants while all our symbolic model variants received support.1242

While this is far from an exhaustive comparison with sub-symbolic concept models, even a1243

successful similarity-driven account of generalizations would only account for half of the1244

behavior in this task. As well as generalizing systematically, participants gave detailed1245

natural language descriptions of their ideas. The majority of these we could convert into1246

logical statements (86%) that predicted most generalizations (72%: children, 84%: adults)1247
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and were consistent with the majority of their learning data (71%: children, 87%: adults).1248

Any subsymbolic account of concepts would essentially need to be paired with an1249

explanation for how people generate these verbal descriptions of their non-symbolic1250

concepts that nonetheless reflect their use (cf. Dennett, 1988). Arguably, this task is no1251

easier than the one of generating a symbolic hypothesis about the nature of the world in1252

the first place. Thus we feel that our results are more straightforwardly explained by our1253

symbolic account whereby the logical structure of the hypotheses participants describe is1254

actually the causal mechanism driving their generalizations rather than some form of1255

computationally expensive but behaviorally impotent retrospective confabulation (cf.1256

Johansson et al., 2008). Our generalization analysis also showcases the difficulty of1257

predicting human behavior in a setting where there is such a large and long-tailed space of1258

similarly plausible rules an individual might be using to drive their generalizations.1259

Modeling symbolic inference directly from the learning input had some predictive power for1260

adults’ generalizations, but simply by asking participants for their best guess, we could1261

immediately get a far better handle on how they would generalize.1262

While we did not provide a fully satisfying model of scene generation, we did show1263

that participant-generated scenes were better understood as adapting earlier scenes than as1264

being created from scratch. We argued that this is consistent with testing driven by one or1265

a couple of conceptually neighboring hypotheses, either generalizing their predictions or1266

contrasting them. This is in some ways a return to pre-Bayesian ideas in philosophy of1267

science in testing permits falsification but not confirmation. Even when a hypothesis h1268

survives repeated confirmatory tests, or repeated head-to-head challenges from local1269

alternatives, we might think of it as gaining a degree of confirmation, but there always1270

remains the specter of potential future falsification (cf. Popper, 1959). We think this better1271

reflects the state of a constructivist learner who cannot know, until discovering it, whether1272

some better hypothesis is waiting in the wings.1273

For a learner limited to a few hypotheses at a time, the approach has clear virtues:1274

It links the process of adapting a hypotheses with that of coming up with new scenes to1275

test and links the outcome of tests to the subsequent inferential step of supplanting or1276

reinforcing the current favored hypothesis. Since learners are always reusing at least some1277

feature or other, it allows the learner’s two tasks to support the other, with reuse of1278

modified previous tests and minimal positive examples minimizing the cognitive and1279

physical costs of generating both new tests and new hypotheses (Gershman & Niv, 2010).1280
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Implications for theories of development1281

Our analyses revealed a variety of developmental differences. Children’s guesses1282

were more complex than adults’, and consequently we could capture them with a1283

significantly “flatter” generation process that inherently produced a wider diversity of1284

hypotheses. This is potentially normative: Having been exposed to less evidence, with less1285

idea what conceptual compositions and fragments will be useful in understanding their1286

environment, we should expect children’s construction process to be less fine-tuned. In1287

other words, children are justified in entertaining a wider set of ideas than adults.1288

However, we noted there are several algorithmic stories that could underpin this diversity:1289

(1) children might simply have hypothesis generation mechanism that embodies a1290

rationally flatter latent prior, (2) they might additionally explore theory space more1291

radically, over and above differences in the relative credibility their latent prior actually1292

attaches to different possibilities (Gopnik, 2020; Lucas et al., 2014; Wu, Schulz,1293

Speekenbrink, Nelson, & Meder, 2018) or (3) we also considered that children’s generation1294

mechanisms might be more dominated by “bottom-up” processes. We take our comparison1295

of PCFG and IDG to speak against option 3. Adults’ hypotheses were, as far as we could1296

tell, at least as anchored to idiosyncratic patterns of their learning data as children’s.1297

However, these data do not distinguish clearly between options (1) and (2). To do this, one1298

would need to measure children and adults’ prior distributions directly. If children’s1299

guesses shift within a problem in a way that is less sensitive to their own relative subjective1300

probabilities than adults, this would support the idea that children’s hypothesis generation1301

is more “high temperature” exploratory than adults’ (Gopnik, 2020), over and above1302

differences in the flatness of their latent prior. Importantly, while the endpoints of1303

children’s theorizing were more diverse than adults’, the cognition required to produce1304

their hypotheses still highly systematic. Children were able to implement a stable-enough1305

symbolic generation or adaptation mechanism to produce meaningful symbolic hypotheses1306

on the large majority of trials, referring to the features and relations they encountered.1307

Even when their hypotheses did a poor job of explaining all the learning data, the1308

hypothesis construction process did not break down entirely as it would if childlike brain1309

activity were simply random and disorganized. However, the issue remains whether there is1310

just more noise in children’s behavior—e.g., they are just a bit more easily distracted1311

compared to adults—as opposed something like a greater inclination to explore.1312

Another aspect of constructivism that we did not focus on here but that is critical1313

to understanding development, is the idea that over time, learners can chunk, cache and1314

recursively reuse concepts to build ever richer ones (cf. Zhao, Bramley, & Lucas, 2022). As1315

such the conceptual library of an adult ought to be more advanced, containing more1316



ACTIVE INDUCTIVE INFERENCE IN CHILDREN AND ADULTS 51

powerful and complex concepts that can be readily reused to build new concepts. This1317

might lead to a prediction of a different pattern of guesses than we found here. That is, we1318

might have expected adults’ concepts to look more complex than children’s, not because1319

they are built from more parts, but because the parts they are built from are, themselves,1320

more complex. We suspect that the reason we did not find this sort of pattern here is that1321

our task used very basic abstract features. Presumably our shape and geometric relation1322

concepts are fairly established by around the age of 10. We predict that this would not1323

hold in more applied domains where adults are able to draw on advanced concepts. For1324

instance, when theorizing about economic conditions an adult might refer advanced1325

primitives like “power laws”, “compound growth” or “arbitrage” that we would not expect1326

to exist yet in the conceptual repertoire of many 9-11 year olds.1327

As well as producing more complex guesses, children also produced more elaborate1328

scenes during learning. One possible characterization is that children’s active scene1329

construction was more exploration-driven and less hypothesis-driven than adults’ (Wu et1330

al., 2018), perhaps mixing more hypotheses-free exploration-driven actions in with1331

hypothesis-driven systematic ones (Meder, Wu, Schulz, & Ruggeri, 2021). Indeed,1332

differences in active exploration are the other side of the coin of the high temperature1333

search idea (Friston et al., 2016; Gopnik, 2020; Klahr & Dunbar, 1988; E. Schulz, Klenske,1334

Bramley, & Speekenbrink, 2017). However within each trial, children’s testing was more1335

repetitive than adults’, suggesting that they made slower progress in exploring the problem1336

space, or were generally less able to keep track of what they had done. The problem of1337

generating informative tests is not quite the same as that of finding the right hypothesis. It1338

is important to avoid redundancy and, in combination, serve to test a wide variety of1339

salient hypotheses. In this sense, adults’ testing behavior was more systematic, better1340

reducing global measures of uncertainty and potentially reflecting a more metacognitive1341

control over learning (Kuhn & Brannock, 1977; Oaksford & Chater, 1994).1342

Curiously, children were more likely to refer to relational and positional properties1343

in their guesses, while adults were most likely to make guesses that pertained to the1344

primary object features (color and size). This is an independently interesting finding. Since1345

relational features are structurally more complex than primitive features, we might have1346

predicted they would be more readily evoked by adults. It could be that children bought in1347

more to the scientific reasoning cover story, treating mechanistic explanations, such as that1348

objects must touch or be positioned in particular ways to produce stars, as credible1349

(Gelman, 2004). Conversely, adults may have been more likely to expect Gricean1350

considerations to apply, e.g. that experimenters would likely set simple rules using salient1351

but abstract features like color over perceptually ambiguous properties like position1352
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(Szollosi & Newell, 2020). However, it could also be the case that there are deeper1353

differences between the experiences of children and adults that render structural features1354

more relevant to children and surface features more relevant to adults.1355

Children’s guesses were also less consistent with their evidence than adults’. This1356

might be because they were less able to extract common features across all eight learning1357

scenes (Ruggeri & Feufel, 2015; Ruggeri & Lombrozo, 2015). However, it could also be a1358

consequence of a more generalized limitation in ability to generate, store and compare1359

hypotheses. With a flatter prior and limited sampling, one has a lower chance of ever1360

generating a hypothesis that can explain all the evidence. Children also under-generalized,1361

often selecting only 1 or 2 of the 8 test scenes (there was actually always 4) doing so even1362

when their symbolic guesses predicted more should be selected. It could be that children1363

found this part of the task overwhelming, perhaps tending to stop after identifying one or1364

two hypothesis consistent scenes rather than evaluating all of them. In sum, it seems1365

children were less able to come up with a concise description of all the evidence generated,1366

reflecting both a less developed metacognitive awareness and the skills needed (both verbal1367

and conceptual) to extract patterns.1368

Conclusions1369

We analyzed an experiment combining rich qualitative and quantitative measures of1370

children’s and adults’ inductive inference. We found a number of developmental differences1371

and demonstrated that we can make sense of these through a constructivist lens. Our1372

results add empirical support and theoretical detail to recent characterizations of children1373

as more diverse thinkers and active learners than adults, and bring us closer to a1374

computational understanding of human learning across the lifespan.1375
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Appendix A: Models1692

Generating PCFG model predictions1693

We created a grammar (specifically a probabilistic context free grammar or PCFG;1694

Ginsburg, 1966) that can be used to produce any rule that can be expressed with1695

first-order logic and lambda abstraction referring to the features participants referred to in1696

our task. The grammatical primitives we assumed are detailed in Table A-1.1697

Table A-1
A Concept Grammar for the Task

Meaning Expression
There exists an xi such that... ∃(λxi :,X )
For all xi ... ∀(λxi : .,X )
There exists {at least, at most, exactly}
N objects in xi such that... N{<,>,=}(λxi : ., N,X )

Feature f of xi has value {larger, smaller,
(or) equal} to v {<,>,≤,≥,=}(xi, v, f)

Feature f of xi is {larger, smaller, (or)
equal} to feature f of xj

{<,>,≤,≥,=}(xi, xj , f)

Relation r between xi and xj holds Γ(xi, xj , r)
Booleans {and,or,not} {∧,∨, 6=}(x)

Object feature Levels

Color {red, green,blue}
Size {1:small, 2:medium, 3:large}
x-position (0,8)
y-position (0,8)
Orientation {Upright, left hand side, right hand side, strange}
Grounded true if touching the ground

Pairwise feature Condition

Contact true if x1 touches x2
Stacked true if x1 is above and touching x2 and x2 is grounded

Pointing true if x1 is orientated {left/right} and x2 is to x1s
{left/right}

Inside true if x1 is smaller than x2 + has same x and y po-
sition (±0.3), false

Note that {<,>,≥,≤} comparisons only apply to numeric features (e.g., size).

There are multiple ways to implement a PCFG. Here we adopt a common approach1698

to set up a set of string-rewrite rules (Goodman et al., 2008). Thus, each hypothesis begins1699

life as a string containing a single non-terminal symbol (here, S) that is replaced using1700
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rewrite rules, or productions. These productions are repeatedly applied to the string,1701

replacing non-terminal symbols with a mixture of other non-terminal symbols and terminal1702

fragments of first order logic, until no non-terminal symbols remain. The productions are1703

so designed that the resulting string is guaranteed to be a valid grammatical expression1704

and all grammatical expressions have a nonzero chance of being produced. In addition, by1705

having the productions tie the expression to bound variables and truth statements, our1706

PCFG serves as an automatic concept generator. Table A-2 details the PCFG we used in1707

the paper.1708

We use capital letters as non-terminal symbols and each rewrite is sampled from the1709

available productions for a given symbol.13 Because some of the productions involve1710

branching (e.g., B → H(B,B)), the resultant string can become arbitrarily long and1711

complex, involving multiple boolean functions and complex relationships between bound1712

variables.1713

We include a variant that samples uniformly from the set of possible replacements1714

in each case, but we also reverse engineer a set of productions that produce exactly the1715

statistics of the empirical samples, as described in the main text.1716

We used the process described in A-2 to produce a sample of 10,000 with a uniform1717

generation prior and an additional 10,000 for each participant with a “held out”1718

age-consistent prior based on the rule guesses of other participants in the requisite1719

agegroup. For the flipped prior analyses, we used the sample generated for the1720

chronologically first participant from the other agegroup. We chose 10,000 simply because1721

this provided reasonable coverage of the task without exhausting our storage and1722

computational capacity.1723

Generating instance driven (IDG) model predictions1724

We used the algorithm proposed in Bramley et al. (2018) to produce a sample of1725

10,000 “grounded hypotheses” for each participant and trial, splitting these evenly across1726

the 8 learning scenes that participant produced and tested. For each, we generated two1727

sets: One using a uniform construction weights, and one with an age-appropriate “held1728

out” set of weights based on the rule guesses of other participants in the requisite agegroup.1729

For the flipped prior analyses, we used the weights from the chronologically first participant1730

from the other agegroup to generate samples inspired by the current participants’ evidence.1731

13 The grammar is not strictly context free because the bound variables (x1, x2, etc.) are automatically
shared across contexts (e.g. x1 is evoked twice in both expressions generated in Figure 2a). We also draw
feature value pairs together and conditional on the type of function they inhabit, to make our process more
concise, however the same sampling is achievable in a context free way by having a separate function for
every feature value, i.e. “‘isRed()” and sampling these directly (c.f. Rothe, Lake, & Gureckis, 2017).
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Table A-2
Prior Production Process

Production Symbol Replacements→

Start S → ∃(λxi : A,X ) ∀(λxi : A,X ) NI(λxi : A,K,X )
Bind additional A→ B S
Expand B → C J(B,B) ¬(B)
Function C → =(xi, D1) I(xi, D2) =(xi, xj , E1)a

I(xi, xj , E2)a Γ(xi, xj , E3)a

Feature/value D1→ value, feature
(numeric only) D2→ value, feature
Feature E1→ feature
(numeric only) E2→ feature
(relational) E3→ feature
Boolean J → ∧ ∨ . . .
Inequality I → ≤ ≥ >

<
Number K → n ∈ {1, 2, 3, 4, 5, 6}

Note: Context-sensitive aspects of the grammar: aBound variable(s) sampled uniformly without
replacement from set; expressions requiring multiple variables censored if only one.

To generate hypotheses as candidates for the hidden rule, the model uses the1732

following procedure with probabilities either set to uniform or drawn from the PCFG-fitted1733

productions for adults or for children (Figure 7) and denoted with square brackets:1734

1. Observe. either:1735

(a) With probability [A→ B]: Sample a cone from the observation, then sample1736

one of its features f with probability [G→ f ]—e.g., {#1}:14 “medium, size” or1737

{#3}: “red, color”.1738

(b) With probability [A→ Start]: Sample two cones uniformly without replacement1739

from the observation, and sample any shared or pairwise feature—e.g.,1740

{#1,#2}: “size”, or “contact”1741

2. Functionize. Bind a variable for each sampled cone in Step 1 and sample a true1742

(in)equality statement relating the variable(s) and feature:1743

(a) For a statement involving an unordered feature there is only one1744

possibility—e.g, {#3}: “= (x1, red, color)”, or for {#1,#2}: “=(x1, x2, color)”1745

(b) For a single cone and an ordered feature, this could also be a nonstrict1746

inequality (≥ or ≤). We assume a learner only samples an inequality if it1747

14 Numbers prepended with # refer to the labels on the cones in the example observation in Figure 2b.
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expands the number of cones picked out from the scene relative to an1748

equality—e.g., in Figure 2b in the main text, there is also a large cone {#1} so1749

either ≥(x1,medium, size) or =(x1,medium, size) might be selected with1750

uniform probability.1751

(c) For two cones and an ordered feature, either strict or non-strict inequalities1752

could be sampled if the cones differ on the sampled feature, equivalently either1753

equality or non-strict inequality could be selected if the cones do not differ on1754

that dimension—e.g., {#1,#2} >(x1, x2, size), or {#3,#4} ≥(x1, x2, size). In1755

each case, the production weights from Figure 7 for the relevant completions are1756

normalized and used to select the option.1757

3. Extend. With probability [B→D]
[B→D]+[B→C(B,B)] go to Step 4, otherwise sample a1758

conjunction with probability [C(B,B)→ And] or a disjunction with probability1759

[C(B,B)→ Or] and repeat. For statements with two bound variables, Step 3 is1760

performed for x1, then again for x2:1761

(a) Conjunction. A cone is sampled from the subset picked out by the statement1762

thus far and one of its features sampled with probability [G→ f ]—e.g., {#1}1763

∧(= (x1, green, color), ≥(x1,medium, size)). Again, inequalities are sample-able1764

only if they increase the true set size relative to equality—e.g.,1765

“∧(≤ (x1, 3, xposition), ≥ (x1,medium, size))”, which picks out more objects1766

than “∧(= (x1, 3, xposition),≥ (x1,medium, size))”.1767

(b) Disjunction. An additional feature-value pair is selected uniformly from either1768

unselected values of the current feature, or from a different feature—e.g.,1769

∨(=(x1, color, red),=(x1, color, blue)) or ∨(=(x1, color, blue),≥ (x1, size, 2)).1770

This step is skipped if the statement is already true of all the cones in the1771

scene.151772

4. Flip. If the inspiration scene is not rule following wrap the expression in a ¬().1773

5. Quantify. Given the contained statement, select true quantifier(s):1774

(a) For statements involving a single bound variable (i.e., those inspired by a single1775

cone in Step 1) the possible quantifiers simply depend on the number of the1776

cones in the scene for which the statement holds. If the statement is true of all1777

cones in the scene Quantifier is selected using probabilities [Start→] combined1778

15 We rounded positional features to one decimal place in evaluating rules to allow for perceptual
uncertainty.
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with [L→] where appropriate. If it is true of only a subset of the cones then1779

∀(λxi : A,X ) is censored and the probabilities re-normalized. K is set to match1780

number of cones for which the statement is true.1781

(b) Statements involving two bound variables in lambda calculus have two nested1782

quantifier statements each selected as in (a). The inner statement quantifying x21783

is selected first based on truth value of the expression while taking x1 to refer to1784

the cone observed in ‘1.’. The truth of the selected inner quantified statement is1785

then assessed for all cones to select the outer quantifier—e.g., {#3,#4}1786

“∧(= (x2, green, color),≤ (x1, x2, size))” might become1787

“∀(λx1 : ∃(λx2 : ∧ (= (x2, green, color),≤ (x1, x2, size)),X ),X )”. The inner1788

quantifier ∃ is selected (three of the four cones are green {#1, #2, #4}), and1789

the outer quantifier ∀ is selected (all cones are less than or equal in size to a1790

green cone).1791

Note that a procedure like the one laid out above is, in principle, capable of1792

generating any rule generated by the PCFG in Figure 7a&7b, but will only do so when1793

exposed to an observation that exemplifies that rule, and will do so more often when the1794

observation is inconsistent with as many other rules as possible (i.e., a minimal positive1795

example). Step 4. allows that non-rule following scenes can be used to inspire rules1796

involving a negation, for instance that “something is not upright” – which is semantically1797

equivalent to saying that “nothing is upright”. Basing hypotheses on instances may1798

improve the quality of the effective sample of hypotheses that the learner generates.1799

One way to think of the IDG procedure is as a partial inversion of a PCFG. As1800

illustrated by the blue text in the examples in Figure 2b in the main text. While the1801

PCFG starts at the outside and works inward, the IDG starts from the central content and1802

works outward out to a quantified statement, ensuring at each step that this final1803

statement is true of the scene.1804

We note that it is possible, in principle, to calculate a lower bound on the prior1805

probability for the PCFG or IDG generating a hypothesis that a participant reported, even1806

if it does not occur in our sample. This can be achieved by reverse engineering the1807

production steps that would be needed to produce the precise encoded syntax. This is a1808

lower bound because it does not count semantically equivalent “phrasings” of the1809

hypothesis that e.g. mention features in different orders or use logically equivalent1810

combinations of booleans. We found that complex expressions tend to have a large number1811

of “phrasings”. In our sample-based approximation we implicitly treat semantically1812

equivalent expressions as constituting the same hypothesis but note that determining1813
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semantic equivalence is an nontrivial aspect of constructivist inference that we do not fully1814

address here.1815

Reverse engineering production child-like and adult-like production weights1816

To roughly accommodate the fact that each guess is based on different learning1817

data, we regularized these counts by including a prior pseudo-count of 5 on all productions.1818

This value was not fit to the data, and simply serves to smooth the predictions a little. For1819

example, children’s rules involved ∃ 263 times, ∀ 108 times and N 297 times, so we1820

assumed prior production weights of1821

{263 + 5, 108 + 5, 297 + 5}/(263 + 108 + 297 + 15) = {.39, .17, .44}. To avoid double1822

counting the data in modeling subjects’ specific guesses, we created a separate1823

agegroup-appropriate prior production weighting for each participant based on the guesses1824

of the other participants’ from the same agegroup, but omitting their own guesses.1825

Appendix B - Model fitting details1826

Full generalization model fits1827

As described in main text, we fit 18 model variants to participant’s data. All models1828

have between 0 and 2 parameters. For each model, we fit the parameter(s) by maximizing1829

the model’s likelihood of producing the participant data, using R’s optim function. We1830

compare models using the Bayesian Information Criterion (Schwarz, 1978) to accommodate1831

their different numbers of fitted parameters.16 Full results are in Table A-3.1832

Scene generation model fits1833

We used a grid search in increments of 0.05 to optimize η and θ and directly1834

optimized λ for each setting of η and θ.1835

Appendix B: Free response coding1836

To analyze the free responses, we first had two coders go through all responses and1837

categorize them as either:1838

16 On one perspective, our derivation of the child-like and adult-like productions constitutes fitting an
additional 39 parameters (m− 1 for each production step), so evoking an additional BIC parameter
penalty of 39× log(3940) = 323 for PCFG Agegroup over PCFG Uniform and similarly for the IDG. If we
were to apply this penalty, the uniform weighted variants would be clearly preferred under the BIC
criterion at the aggregate level. It is less clear how to apply this penalty at the individual level since the
held out priors are fit to different data than that being modeled. We chose to include the fitted versions
alongside the uniform versions here without penalty as demonstrations of the differences that arise from
different generation probabilities.
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Table A-3
Models of Participants’ Generalizations

Model Group log(Likelihood) BIC λ τ N N blind Accuracy

1. Baseline children -1319.75 2639.50 7 13 50%
2. Bias children -1218.96 2445.47 0.32 16 25 50%
3. PCFG Uniform children -1319.72 2647.00 58.17 0 1 61%
4. PCFG Uniform + Bias children -1208.93 2432.97 0.35 2.18 0 0
5. PCFG Flipped children -1318.46 2644.47 8.97 1 1 66%
6. PCFG Flipped + Bias children -1207.28 2429.67 0.34 2.07 0 0
7. PCFG Agegroup children -1319.58 2646.71 24.17 1 1 63%
8. PCFG Agegroup + Bias children -1208.63 2432.36 0.35 2.15 0 0
9. IDG Uniform children -1298.73 2605.02 1.78 1 2 65%
10. IDG Uniform + Bias children -1193.90 2402.90 0.32 1.19 0 0
11. IDG Flipped children -1315.49 2638.54 4.35 1 4 66%
12. IDG Flipped + Bias children -1199.22 2413.54 0.35 1.38 0 0
13. IDG Agegroup children -1308.05 2623.65 2.51 2 5 69%
14. IDG Agegroup + Bias children -1193.41 2401.93 0.34 1.19 0 0
15. Similarity children -1316.44 2640.42 -1.99 0 1 41%
16. Similarity + Bias children -1214.71 2444.52 0.32 -1.30 1 1
17. Symbolic Guess children -1143.69 2294.92 1.02 15 62%
18. Symbolic Guess + Bias children -1067.18 2149.47 0.26 0.80 9

1. Baseline adults -1386.29 2772.59 2 5 50%
2. Bias adults -1364.90 2737.40 0.15 6 6 50%
3. PCFG Uniform adults -1320.64 2648.89 1.27 0 0 63%
4. PCFG Uniform + Bias adults -1253.52 2522.25 0.26 0.68 0 0
5. PCFG Flipped adults -1294.91 2597.42 1.06 1 1 66%
6. PCFG Flipped + Bias adults -1229.18 2473.55 0.24 0.63 0 0
7. PCFG Agegroup adults -1266.96 2541.51 0.94 1 5 69%
8. PCFG Agegroup + Bias adults -1203.64 2422.47 0.23 0.59 0 0
9. IDG Uniform adults -1228.21 2464.02 0.67 2 8 69%
10. IDG Uniform + Bias adults -1179.12 2373.44 0.20 0.48 0 0
11. IDG Flipped adults -1245.56 2498.72 0.76 0 5 73%
12. IDG Flipped + Bias adults -1179.23 2373.65 0.24 0.48 0 0
13. IDG Agegroup adults -1188.28 2384.17 0.62 2 15 74%
14. IDG Agegroup + Bias adults -1134.58 2284.37 0.20 0.44 0 0
15. Similarity adults -1359.05 2725.70 -0.73 0 1 37%
16. Similarity + Bias adults -1337.55 2690.30 0.14 -0.61 0 4
17. Symbolic Guess adults -893.49 1794.58 0.56 32 70%
18. Symbolic Guess + Bias adults -880.59 1776.38 0.08 0.50 4

Note: Boldface indicates best fitting model overall. N blind restricts comparisons to models blind to the symbolic guess.

Underlines indicate best fitting blind model. Accuracy column shows performance of the requisite model on 100 simulated runs

through the task using participants’ active learning data with τ set to 1/100 (i.e. hard maximizing over the model predictions).

Biased models perform strictly worse so are not included in this column.

1. Correct: The subject gives exactly the correct rule or something logically equivalent1839

2. Overcomplicated: The subject gives a rule that over-specifies the criteria needed to1840

produce stars relative to the ground truth. This means the rule they give is logically1841

sufficient but not necessary. For example, stipulating that “there must be a small1842

red” is overcomplicated if the true rule is “there must be a red” because a scene could1843

contain a medium or large red and emit stars.1844

3. Overliberal: The opposite of overcomplicated. The subject gives a rule that1845

under-specifies what must happen for the scene to produce stars. For example,1846
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stipulating that “there must be a blue” if the true rule is that “exactly one is blue”.1847

This is logically necessary but not sufficient because a scene could contain blue1848

objects but not produce stars because there is not exactly one of them.1849

4. Different: The subject gives a rule that is intelligible but different from the ground1850

truth in that it is neither necessary or sufficient for determining whether a scene will1851

produce stars.1852

5. Vague or multiple. Nuisance category.1853

6. No rule. The subject says they cannot think of a rule.1854

We were able to encode 205/238 (86%) of the children’s responses and (219/250)1855

87% for adults as correct, overcomplicated, overliberal or different. Table A-4 shows the1856

complete confusion matrix. The two coders agreed 85% of the time, resulting in a Cohen’s1857

Kappa of .77 indicating a good level of agreement (Krippendorff, 2012).1858

Table A-4
Agreement Matrix for Independent Coders’ Free Response Classifications

correct overliberal overspecific different vague no rule multiple
correct 93 1 5 0 0 0 0

overliberal 5 13 1 8 0 1 0
overspecific 1 2 42 12 0 0 0

different 0 5 3 224 15 3 0
vague 0 1 2 3 11 6 0

no rule 0 0 0 0 0 31 0
multiple 0 1 0 2 0 0 0

We then had one coder familiar with the grammar go through each free response1859

that was not assigned vague or no rule, and encode it as a function in our grammar. The1860

second coder then blind spot checked 15% of these rules (64) and agreed in 95% of cases1861

61/64. The 6 cases of disagreement were discussed and resolved. In 5/6 cases, this was in1862

favor of the primary coder. The full set of free text responses along with the requisite1863

classification, encoded rules are available in the Online Repository.1864

Appendix C: Scene similarity measurement1865

To establish the overall similarity between two scenes, we need to map the objects1866

in a given scene to the objects in another scene (for example between the scenes in1867

FigureA-1 a and b) and establish a reasonable cost for the differences between objects1868

https://github.com/bramleyccslab/computational_constructivism
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across dimensions. We also need a procedure for cases where there are objects in one scene1869

that have no analogue in the other. We approach the calculation of similarity via the1870

principle of minimum edit distance (Levenshtein, 1966). This means summing up the1871

elementary operations required to convert scene (a) into scene (b) or visa versa. We assume1872

objects can be adjusted in one dimension at a time (i.e. moving them on the x axis,1873

rotating them, or changing their color, and so on.1874

Before focusing on how to map the objects between the scenes we must decide how1875

to measure the adjustment distance for a particular object in scene a to its supposed1876

analogue in scene b. As a simple way to combine the edit costs across dimensions we first1877

Z-score each dimension, such that the average distance between any two values across all1878

objects and all scenes and dimensions is 1. We then take the L1-norm (or city block1879

distance) as the cost for converting an object in scene (a) to an object in scene (b), or visa1880

versa. Note this is sensitive the size of the adjustment, penalizing larger changes in1881

position, orientation or size more severely than smaller changes, while changes in color are1882

all considered equally large since color is taken as categorical. Note also that for1883

orientation differences we also always assume the shortest distance around the circle.1884

If scene (a) has an object that does not exist in scene (b) we assume a default1885

adjustment penalty equal to the average divergence between two objects across all1886

comparisons (3.57 in the current dataset). We do the same for any object that exists in (a)1887

but not (b).1888

Calculating the overall similarity between two scenes involves solving a mapping1889

problem of identifying which objects in scene (a) are “the same” as those in scene (b). We1890

resolve this “charitably”, by searching exhaustively for the mapping of objects in scene (a)1891

to scene (b) that minimizes the total edit distance. Having selected this mapping, and1892

computed the final edit distance including any costs for additional or removed objects, we1893

divide by the number shared cones, so as to avoid the dissimilarities increasing with the1894

number of objects involved.1895

Figure A-2 computes the inter-scene similarity components that go into Figure 6c in1896

the main text. Summing up the edit distances across all objects, children’s scenes seem1897

much more diverse than adults (Figure A-2a). However this is primarily due to their1898

containing a greater average number of objects. Scaling the edit distance by the number of1899

objects in the target scene gives a more balanced perspective (Figure A-2b) but does not1900

account for the fact that the compared scene may contain more or fewer objects in total.1901

Figure A-2c visualizes just the object difference showing that children’s scenes contain1902

roughly as many objects on average as the initial example while adults’ scenes contain1903

around 0.75 fewer objects than are present in the initial example (dark shading in top row).1904
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#1

#2

#3 #2 #1#3

3.4 5.3 1.8 3.6

a) b)

Figure A-1
Three example scenes. Objects indices link the most similar set of objects in b to those in a.
Numbers below indicate the edit distance for each object (i.e. the sum of scaled dimension
adjustments).

Thus, we opted to combine b and c by weighting the unsigned cone difference by the mean1905

inter-object distance across all comparisons to give our combined distance measure1906

(Figure A-2d and Figure 6c in the main text).1907
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b) Scaled distance
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c) Cone difference
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d) Combined distance

Figure A-2
a) The average minimum edit distance summed up across shared objects. b) Rescaling a by
dividing by the number of objects. c) The penalty for additional or omitted objects.
d)Combined distance as in main text.

Appendix D: Comparison with Bramley et al (2018)1908

Finally, for interest and to demonstrate replication of our core results. We provide a1909

direct comparison between the generalization accuracies in the current sample of children1910

and adults and those in the sample of 30 adults modeled in (Bramley et al., 2018).1911

Bramley et al (2018) included 10 ground truth concepts, and the current paper uses just1912

the first five of these. Figure A-3 shows these accuracy patterns side by side, revealing the1913

adults in the current experiment performed approximately as well as those in the original1914

conference paper.1915
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One is stacked on another

A blue and a red touch

Something is touching something else

There is a red bigger than any non reds

All are blue or small

There is a small blue

One is blue

Nothing is upright

all are the same size

There is a red

0 2 4 6
Correct (of 8)

R
ul

e

Experiment Adult pilot (N=30) Adults (N=50) Children (N=54)

Figure A-3
Generalization accuracy by number of objects per test scene comparing with 10 rule adult
pilot from Bramley et al. (2018).
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