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Abstract

A defining aspect of being human is an ability to reason about the world by generating
and adapting ideas and hypotheses. Here we explore how this ability develops by
comparing children’s and adults’ active search and explicit hypothesis generation patterns
in a task that mimics the open-ended process of scientific induction. In our experiment, 54
children (aged 8.97± 1.11) and 50 adults performed inductive inferences about a series of
causal rules through active testing. Children were more elaborate in their testing behavior
and generated substantially more complex guesses about the hidden rules. We take a
‘computational constructivist’ perspective to explaining these patterns, arguing that these
inferences are driven by a combination of thinking (generating and modifying symbolic
concepts) and exploring (discovering and investigating patterns in the physical world). We
show how this framework and rich new dataset speak to questions about developmental
differences in hypothesis generation, active learning and inductive generalization. In
particular, we find children’s learning is driven by less fine-tuned construction mechanisms
than adults’, resulting in a greater diversity of ideas but less reliable discovery of simple
explanations.
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Active inductive inference in children and adults: A constructivist perspective

“We think we understand the rules when we become adults but what we really
experience is a narrowing of the imagination.” –— David Lynch

A central question in the study of both human development and reasoning is how1

learners come up with the ideas and hypotheses they use to explain the world around2

them. Children excel at forming new categories, concepts, and causal theories (Carey,3

2009) and by maturity, this coalesces into a capacity for intelligent thought characterized4

by its domain generality and occasional moments of insight and innovation. Constructivism5

is an influential perspective in developmental psychology (Carey, 2009; Piaget, 2013; Xu,6

2019) and philosophy of science (Fedyk & Xu, 2018; Phillips, 1995; Quine, 1969) that7

posits learners actively construct new ideas through a mixture of thinking—recombining8

and modifying ideas—and play—exploring and discovering patterns in the world (Bruner,9

Jolly, & Sylva, 1976; Piaget & Valsiner, 1930; Xu, 2019). While the tenets and promise of10

constructivist accounts are appealing, it has historically lacked the formalization needed to11

distinguish it from alternative accounts of learning, limiting its testable predictions or12

detailed insights into cognition. We draw on recent methodological advances to formalize13

key aspects of constructivism and use these to analyze children and adults’ behavior in an14

open-ended inductive learning task. We show that a virtue of the constructivist account is15

that it captures the wide range of ideas and testing behaviors we observe, particularly in16

children. We use our account to examine developmental differences in hypothesis17

generation and active learning. To foreshadow, we show children’s hypothesis generation18

and active learning are driven by less fine-tuned construction mechanisms than adults’,19

resulting in a greater diversity of ideas but less reliable discovery of simple explanations20

and less systematic coverage of the data space.21

Concept learning22

Classic work in experimental psychology suggests symbol manipulation is required23

for humanlike reasoning and problem solving (Bruner, Goodnow, & Austin, 1956;24

Johnson-Laird, 1983; Wason, 1968). However, classic symbolic accounts struggled to25

explain how discrete representations could be learned or effectively applied to reasoning26

under uncertainty (Oaksford & Chater, 2007; Posner & Keele, 1968). Meanwhile, statistical27

accounts of concept learning have flourished by treating concepts as driven by “family28

resemblance” within a feature space—for instance, centered around a prototypical example29

or set of exemplars (Kruschke, 1992; Love, Medin, & Gureckis, 2004; Medin & Schaffer,30

1978; Shepard & Chang, 1963). Such accounts help explain how people assign category31

membership fuzzily, and generalize effectively to novel stimuli (Shepard, 1987) but lack a32



ACTIVE INDUCTIVE INFERENCE IN CHILDREN AND ADULTS 4

core representation capable of capturing how people construct conceptual novelty33

(Komatsu, 1992).34

Bayesian approaches have also played a major role in study of concept learning,35

providing a principled way of modeling probabilistic inference over both sub-symbolic and36

symbolic hypothesis spaces (Howson & Urbach, 2006). On the symbolic side this includes37

inferences about particular causal structures (Bramley, Lagnado, & Speekenbrink, 2015;38

Coenen, Rehder, & Gureckis, 2015; Gopnik et al., 2004; Steyvers, Tenenbaum,39

Wagenmakers, & Blum, 2003) as well as more general causal theories (Goodman, Ullman,40

& Tenenbaum, 2011; Gri�ths & Tenenbaum, 2009; Kemp & Tenenbaum, 2009; Lucas &41

Gri�ths, 2010). Alongside Bayesian analyses, information theory has also featured42

frequently as a metric of idealized evidence acquisition (Gureckis & Markant, 2012),43

including choice of interventions and experiments that reveal causal structure (Bramley,44

Dayan, Gri�ths, & Lagnado, 2017; Bramley et al., 2015; Coenen et al., 2015; Steyvers et45

al., 2003). However, since idealized Bayesian and information theoretic accounts describe46

learning within a prede�ned hypothesis space, they do not directly explain how a learner47

explores or generates possibilities within an in�nite latent space. That is, probabilistic48

accounts of induction on are generally cast at Marr's computational level (Marr, 1982),49

showing people behave roughlyas if they consider and average exhaustively over what is50

really an unbounded space of possible concepts. Thus, while these accounts provide a51

jumping o� point for rational analysis of cognition, we should take their limitations52

seriously when seeking to reverse engineer humanlike inductive inference (Simon, 2013;53

Van Rooij, Blokpoel, Kwisthout, & Wareham, 2019).54

The goal of this paper is to examine children's and adults' inductive learning in a55

rich open-ended task where the space of potential hypotheses and behaviors is e�ectively56

unbounded. In doing this, we will treat constructivism as a form of rational process57

framework (Lieder & Gri�ths, 2020), capturing how people are shaped by Bayesian and58

information-theoretic norms but also why they diverge from and fall short of them outside59

of constrained scenarios. To do this, we focus on recent work in cognitive science that has60

attempted to marry symbolic and statistical perspectives. This work characterizes61

computational principles driving both human development and intelligence as resting on a62

capacity to �exibly generate, adapt, combine and re-purpose symbolic representations63

when learning and reasoning, but crucially to do so in ways that approximate probabilistic64

principles of inference under uncertainty (Bramley, Dayan, et al., 2017; Goodman,65

Tenenbaum, Feldman, & Gri�ths, 2008; Piantadosi, 2021; Piantadosi, Tenenbaum, &66

Goodman, 2016).67
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Constructivism68

Fundamentally, we take the constructivist account to depart from69

computational-level Bayesian accounts because it presumes representational70

incompleteness, and consequentlystochasticity and path dependencein a given individual's71

learning trajectory. By this, we mean that the constructivist learner has not, and normally72

could not, consider and weigh all the possibilities in play when learning. Instead, they73

must have some mechanism for generating and comparing �nite numbers of discrete74

possibilities (Sanborn & Chater, 2016; Stewart, Chater, & Brown, 2006). Eponymously, the75

construction mechanism needs to be capable of recursiveconstruction: composing and76

recomposing symbolic elements so as to achieve the systemtaticity and productivity77

required for a �nite system to cover an in�nite space of ideas (Piantadosi & Jacobs, 2016).78

In this way, constructivist views treat algorithmic-level cognition as necessarily symbolic79

and at least somewhat language-like (Fodor, 1975) in its ability to make �in�nite use of80

�nite means� (von Humboldt, 1863/1988).81

For example, a constructivist learner might stochastically combine elements from an82

underlying concept grammar to produce new ideas that can be tested against evidence.83

Alternatively, they might use their grammar to describe patterns in evidence or to adapt a84

previous hypotheses to �t some new evidence (Bonawitz, Denison, Gopnik, & Gri�ths,85

2014; Lewis, Perez, & Tenenbaum, 2014; Nosofsky & Palmeri, 1998; Nosofsky, Palmeri, &86

McKinley, 1994). Outside of narrow experimental settings, this modal incompleteness87

seems completely normal. A simple illustration is the gap between ease of evaluation versus88

generation of hypotheses (Gettys & Fisher, 1979). We can typically generate fewer89

explanations on the �y�i.e., reasons why our car won't start�than we would endorse if a90

list was presented to us. We would likely come up with more as we looked under the hood91

than we would sat in the car thinking. Inference about any area of active scienti�c inquiry,92

like that reported in this journal, typically involve an enormous latent space of potential93

explanatory theories only a fraction of which have ever been articulated or tested and94

many of which were discovered only serendipitously (Shackle, 2015). It is generally95

accepted that the ground truth is unlikely to be among the set of theories already on the96

table (Box, 1976) and that challenging results are as likely to lead to theory modi�cation97

as complete abandonment (Lakatos, 1976).98

The constructivist perspective thus departs from a Bayesian analysis by emphasizing99

that induction is as much about constructing candidate possibilities, as optimizing within a100

set of candidates. This reframing demysti�es a number of behavioral patterns that look101

like biases from the computational-level perspective. These includeanchoring, order102

e�ects, probability matching and con�rmation bias. For example,Anchoring is a natural103



ACTIVE INDUCTIVE INFERENCE IN CHILDREN AND ADULTS 6

consequence of generating new hypotheses by making local adjustments to an earlier104

hypothesis or from a salient starting point such as a number mentioned in a prompt105

(Gri�ths, Lieder, & Goodman, 2015; Lieder, Gri�ths, Huys, & Goodman, 2018). Order106

e�ects, where the sequence of evidence encountered a�ects the �nal belief, are pervasive in107

human learning. If new hypotheses are arrived at through a limited local search starting108

from a previous hypothesis then we should expect path dependence and auto-correlation109

between a single learner's hypotheses over time (Bramley, Dayan, et al., 2017; Dasgupta,110

Schulz, & Gershman, 2016; Fränken, Theodoropoulos, & Bramley, 2022; Thaker,111

Tenenbaum, & Gershman, 2017; Zhao, Lucas, & Bramley, 2022).Probability matching is112

also natural under a constructivist perspective. In experiments, participants often choose113

options in proportion to their probability of being correct or optimal rather than reliably114

selecting the best action, as we might expect if they had the full posterior to hand (Shanks,115

Tunney, & McCarthy, 2002). However, it can be shown that rather than being a choice116

pathology, probability matching may be better seen as abest casescenario for a learner117

limited to using the the endpoint of a local search as their guess (Bramley, Dayan, et al.,118

2017). It has been argued that in a variety of plausible everyday settings, a119

single-sample�based decision can be the appropriate computation�accuracy tradeo� for a120

resource-limited learner (Vul, Goodman, Gri�ths, & Tenenbaum, 2009).Con�rmation bias121

is also pervasive in human reasoning and active learning (Klayman & Ha, 1989) and hard122

to explain in purely Bayesian terms. Wason (1960) famously asked participants to test and123

identify a hidden rule and initially simply told them that the sequence 2�4�6 followed the124

rule. The intended true rule was simply �ascending numbers� but participants frequently125

guessed more complex rules such as �numbers increasing by two�. Analysis of participants'126

tests revealed that they frequently generated tests that would be rule-following under their127

hypothesis (such as 6�8�12), so failing to adequately challenge and discon�rm this128

hypothesis. On a constructivist perspective, learners can only base their exploration on129

testing hypotheses they have actually generated (or else behave randomly). To the extent130

that certain simpler hypotheses like �ascending numbers� were less likely to be generated131

on the basis of the provided example (cf. Oaksford & Chater, 1994; Tenenbaum, 1999), it is132

not surprising that participants failed to actively exclude these possibilities with their tests.133

In the computational cognitive science literature, recent symbolic search ideas134

manifest under the label of �learning as program induction�. Such models have begun to be135

applied to synthesizing humanlike problem solving and planning and tool use (Allen,136

Smith, & Tenenbaum, 2020; Ellis et al., 2020; Lai & Gershman, 2021; Lake, Ullman,137

Tenenbaum, & Gershman, 2017; Ruis, Andreas, Baroni, Bouchacourt, & Lake, 2020; Rule,138

Schulz, Piantadosi, & Tenenbaum, 2018). We will draw on these in examining children and139
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adults hypothesis generation.140

Constructivism in Development141

The �child as scientist� (Carey, 1985; Gopnik, 1996)�or recently, �child as hacker�142

(Rule, Tenenbaum, & Piantadosi, 2020) � perspective casts children's cognition as driven143

by broadly the same inductive processes as adults' but at an earlier stage in a journey of144

construction and discovery.145

While children have been shown to be capable active learners (McCormack,146

Bramley, Frosch, Patrick, & Lagnado, 2016; Meng, Bramley, & Xu, 2018; Sobel & Kushnir,147

2006) there is also evidence that children's ability to learn e�ectively from active learning148

data is more fragile than adults'. For example, children's play can look repetitive and149

ine�cient when held to information theoretic norms (Lapidow & Walker, 2020; McCormack150

et al., 2016; Meng et al., 2018; Sim & Xu, 2017). Sobel and Kushnir (2006) also found151

children were much less accurate at causal structure identi�cation in �yoked�152

conditions�where they had to use evidence generated by someone else to learn�while153

adults are less e�ected, sometimes able to learn about as well from others' data as their154

own (Lagnado & Sloman, 2006). This performance gap has been argued to stem from the155

mismatch between whatever idiosyncratic hypotheses are under consideration by the156

observer and those being tested by the active learner, making the yoked learner less able to157

use the data to progress their theories (Fränken et al., 2022; Markant & Gureckis, 2014).158

Relatedly, children have been argued to be more narrowly focused toward testing a single159

hypothesis at a time (Bramley, Jones, Gureckis, & Ruggeri, 2022; Ruggeri & Lombrozo,160

2014; Ruggeri, Lombrozo, Gri�ths, & Xu, 2016). This might re�ect a less developed161

working memory, restricting the number of hypotheses children can keep track of and162

compare to evidence. An early emphasis on exploration has also been argued to be an163

e�ective solution to a lifelong explore�exploit tradeo�, since earlier discoveries can be164

exploited for longer (Gopnik, 2020). Program induction also provides a potential165

explanation for transitions between developmental �stages�, characterized by occasional166

leaps forward in insight. For instance, Piantadosi, Tenenbaum, and Goodman (2012)167

demonstrate how a program induction model can reproduce a characteristic developmental168

transition from grasping a few small numbers to discovering a recursive concept of real169

numbers. We note that an important part of constructivism is the idea that wecachethe170

useful concepts we invent (cf. Zhao, Bramley, & Lucas, 2022), meaning our conceptual171

library grows as we do, becoming richer and more powerful for solving the tasks we172

repeatedly face. We do not attempt to model this important aspect of constructivism in173

this paper but return to it in the General Discussion.174
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Di�erences between childlike and adultlike inductive inference might also be175

captured by parameterizable di�erences in search, potentially re�ecting principles of176

stochastic optimization (Lucas, Bridgers, Gri�ths, & Gopnik, 2014). For instance, young177

children have been found to be quick to make broad abductive generalizations from a small178

number of examples�e.g. readily imputing novel physical laws to explain surprising179

evidence (L. E. Schulz, Goodman, Tenenbaum, & Jenkins, 2008). Building on this �nding,180

children's hypothesis generation and search has been framed as rationally �higher181

temperature� than adults'�producing more diversity of ideas at the cost of being noisier182

(Lucas et al., 2014). This is algorithmically sensible as optimization over high dimensional183

spaces is known to be more e�ective when proposals are initially large leaps and decrease184

over time, as insimulated annealing(Van Laarhoven & Aarts, 1987). However, a high185

diversity of guesses might also re�ect that children have a rationally �atter latent prior186

than adults, inherently entertaining a wider range of hypotheses at the cost of entertaining187

high probability ones less frequently. A third possibility is that children's hypothesis188

generation might be driven more bybottom-upprocessing than adults'. With less189

established expectations, or less powerful primitive concepts to work with, children's190

hypotheses might more directlydescribeencountered patterns, while adults might rely191

more on their existing knowledge hierarchy to constrain hypothesis generation in a192

top-downway (Clark, 2012). We will contrast children's and adults' hypothesis generation193

and active learning in a rich task setting that allows us to closely investigate these ideas.194

Task195

In order to study inductive learning, we use a rich open-ended task that extends on196

Wason (1960) and the logical rule-induction tasks studied by Nosofsky et al. (1994), Lewis197

et al. (2014), Goodman et al. (2008), and Piantadosi et al. (2016). Akin to the198

blicket-detector paradigm in developmental causal cognition (Gopnik et al., 2004; Lucas et199

al., 2014), our task has a causal framing, probing inductive inferences about what200

conditions make an e�ect occur in a minimally contextualized domain. However, departing201

from Blicket detector tasks, we include a large and physically rich set of features that202

learners can draw on in their inferences allowing test scenes to vary in the number, nature203

and arrangement of objects. Our task is inspired by a tabletop game of scienti�c induction204

called �Zendo� (Heath, 2004) and builds on a pilot task examined in (Bramley, Rothe,205

Tenenbaum, Xu, & Gureckis, 2018). In it, learners both observe and createscenes, which206

are arrangements of 2D triangular objects calledcones(Figure 1) and test them to see if207

they produce a causal e�ect (which arrangements of blocks �make stars come out� in our208

minimal framing). The goal is to both predict which of a set of new scenes will produce the209
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e�ect and describe the hidden rule that determines the general set of circumstances210

produce the e�ect (try it here). Scenes could contain between 1 and 9 cones. Each cone has211

two immutable properties: size2 f small, medium, largeg and color2 f red, green, blueg and212

continuous scene-speci�c x2(0,8), y2(0,6) positions and orientations2(0,2� ). In addition to213

cones' individual properties, scenes also admit many relational properties arising from the214

relative features and arrangement of di�erent cones. For instance, subsets of cones might215

share a feature value (i.e., be the same color, or have the same orientation) or be ordered216

on another (i.e., be larger than, or above) and pairs of cones might have relational217

properties like pointing at one another or touching. This results in an extremely rich218

implicit space of potential concepts.219

We note that, by design, the dimensionality of this task makes it extremely di�cult.220

As with Wason's 2-4-6 example, and genuine questions of scienti�c induction, the hard part221

of this task is not evaluating whether a candidate hypothesis can explain the data but222

rather generating the right hypothesis in the �rst place. As with the 2-4-6 task, there are223

always in�nite data-consistent possibilities and while the bulk of these may be outlandishly224

complex, many others may still be simpler or more salient than the ground truth. Without225

carefully gathered evidence with broad coverage of the space of possible scenes, a learner226

will frequently be unable to rule out simpler possibilities that more parsimoniously capture227

the data than the ground truth, essentially being left with evidence that would not lead228

even an unbounded Bayesian agent to the correct answer.1
229

We use mixed-methods (Johnson, Onwuegbuzie, & Turner, 2007), analyzing both230

qualitative data in the form of freely generated guesses about the symbolic rules and231

quantitative data in the form of forced choice generalizations. Concretely, we adopt an232

expressive concept grammar inspired by constructivist ideas in developmental psychology233

and formalized using program induction ideas from machine learning. We assume the234

latent space of possible concepts in our task are those expressible in �rst order logic235

combined with lambda abstraction (Church, 1932) and full knowledge of the potentially236

relevant features of the scene (see Appendix Table A-1 for the grammatical primitives we237

assume). Table 1 shows the �ve ground truth rules we used in our experiment expressed in238

natural language and in lambda calculus along with the initial rule-following example scene239

we provided to participants.240

Given the inherent di�culty of this type of task we expect absolute accuracy to be241

1 In tabletop game form, Zendo typically takes dozens of rounds of tests and incorrect guesses by multiple
guessers, as well as leading examples and clues from the rule-setter for even simple hidden rules to be
identi�ed. An online community on Reddit play a binary sequence version of Zendo, often taking hundreds
of guesses before the answer is found if it is at all (for example here).
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Figure 1
The experimental task: a) Active learning phase. b) An example sequence of 8 tests, the
�rst is provided to all participants, and subsequent tests are constructed by the learner
using the interface in (a). Yellow stars indicate those that follow the hidden rule. c)
Generalization phase: Participants select which of a set of new scenes are rule following by
clicking on them.

fairly low for both children and adults (and for our models). However, we expect that242

many participants will be able to make guesses that are consistent with most of the243

evidence they have. Since we might expect evaluation of evidence�hypothesis consistency244

to be more error-prone in children, we expect adults' guesses to be more strictly consistent245

with their evidence. Finally, there is the question of relative dominance of bottom-up and246

top-down processing in children's and adults' guesses. To explore this, we consider two247

models that di�er in this dimension.248

Context-free hypothesis generation249

In examining children's and adults' inferences, we start by laying out a �top-down250

�rst� approach to hypothesis generation, utilizing a probabilistic context-free grammar251

(PCFG) to de�ne and draw from a latent prior over concepts expressible in �rst order252

logic. A PCFG is a collection of �construction rules� that, when run repeatedly,253

stochastically create expressions in an underlying grammar (Ginsburg, 1966). A PCFG can254

be used to generate a prior sample of hypotheses that can then be weighted by their255

likelihoods of producing observations�here, their ability to reproduce the labels of the256

scenes that the participant has tested. The hypotheses make predictions about new scenes257

which can be weighted by their posterior probability and marginalized over to make258

generalizations. Because parts of this production process and underlying grammar involve259

branching�e.g., �and� and �or��sampled hypotheses can be arbitrarily long and complex,260

involving multiple Boolean functions and complex relationships between an unlimited261

number of bound variables. In this way, an in�nite latent space (in our case �rst order logic262
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+ lambda abstraction) is covered in the limit of in�nite PCFG sampling (see Figure 2a).263

Thus, one way to think of the PCFG is as acomputational levelcharacterization of the264

problem of inductive inference. However, we will argue that the generative mechanism at265

the heart of of the PCFG framework also elucidates important mechanistic considerations266

and provides the representational framework needed to ground algorithmic approximations267

that depart from this ideal and re�ect core constructivist ideas.268

At the computational level, di�erent PCFGs, containing di�erent primitives and269

expansions, can be compared against human behavior. And the probabilities for the270

productions in a PCFG can be �t to maximize correspondence with human judgments. In271

this way, recent work has attempted to infer the �logical primitives of thought� (Goodman272

et al., 2008; Piantadosi et al., 2016). Here we consider a single expressive PCFG273

architecture and examine its behavior under limited sampling. We examine its behavior274

with uniform production weights but also with weights engineered to produce the275

characteristics of �childlike' and �adultlike� symbolic guesses in our task. Crucially, under276

all these weighting schemes, our PCFG embodies the principle of parsimony: Simpler277

concepts�composed of fewer grammatical parts (Feldman, 2000)�have a higher278

probability of being produced and so are favored over more complex ones equally able to279

explain the data.280

While naively, we might expect children to entertain simpler concepts than adults,281

this induction framework tends to predict the reverse. If we assume we start life at our282

most �exible, or �programable� (Turing, 2009), this would be like being born with concept283

building mechanism that is initially �untuned�, growing its concepts essentially through284

blind mutation (Campbell, 1960) where each forking path on the road to a complete285

concept starts out equiprobable. However as a learner gathers a lifetime of experience, we286

would expect these construction weights to become tuned so as to favor certain elements or287

features that have proven useful in the past. A uniform-weighted PCFG hypothesis288

generator will thus tend to produce greater diversity than a more �ne-tuned one. As such,289

it embodies the idea that more elaborately or implausibly structured, or �weird�, concepts290

will come to the minds of children than adults.291

What PCFG approaches have in common is a generative mechanism for sampling292

from an in�nite latent prior, here over possible logical concepts. However, sampled293

�guesses� must also be tested against data. Unfortunately, in our task�and perhaps even294

more so outside of it�the vast majority a priori generated concepts are likely to be295

inconsistent with whatever evidence a learner has already encountered.2 For this reason,296

2 In our task, many more are simply tautological (i.e., �All cones are red or not red�), contradictory (i.e.,
�There is a cone that is red and not red�), or physically impossible (�Two (di�erent) objects have the same
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the procedure is astronomically ine�cient, requiring very large numbers of samples in order297

to reliably generate non-trivial rules. One can also use a PCFG to adapt existing298

hypotheses, for instance using a Markov Chain Monte Carlo scheme in which parts of a299

hypothesis are regrown and accepted according to their �t to evidence (cf. Fränken et al.,300

2022; Goodman et al., 2008). While we think this approach is promising we do not model301

this here, and simply return to it in the general discussion. However, we do additionally302

consider an alternative to the PCFG, that provides a more sample e�cient and, on the face303

of it, more cognitively plausible mechanism for initializing new hypotheses.304

Context-based hypothesis generation305

Instance Driven Generation (IDG) (Bramley et al., 2018) is a recent proposal306

related to the PCFG framework but with a key di�erence. Rather than generating initial307

hypotheses prior to, or blind to the current evidence, the IDG generates ideasinspired by308

encountered patterns (cf. Michalski, 1969), thus incorporating bottom-up reactivity to309

evidence into its conceptualization process. Each IDG hypothesis starts with an310

observation of features of one or several objects in a scene and uses these to back out a true311

logical statement about the scene in a stochastic but truth-preserving way. If the scene is312

rule following, this statement constitutes a positive hypothesis about the hidden rule.313

Otherwise, it constitutes a negative hypothesis, i.e. about what mustnot be present. Thus,314

an IDG does not begin each learning problem with a prior over all possible concepts, but315

rather draws its initial ideas from a restricted space consistent with the extant patterns in316

a focal observation. Figure 2b illustrates this approach. While a regular PCFG e�ectively317

starts at the top level (i.e. outermost nesting) of a compound concept and works downward318

and inward, the IDG starts from the central content (drawn from its observation) and319

works upward and outward to a quanti�ed statement, ensuring at each step that the320

statement is true of the scene. The result is a mechanism that uses its concept grammar to321

describe features and patterns in evidence. This means that the IDG does not entertain322

hypotheses that are possible but never exempli�ed by a scene. For example, �at most �ve323

reds� would only be generated if a learner actually saw a rule-following scene containing324

�ve reds. A key prediction of the IDG is an interaction between the scenes generated by325

the participant and the hypotheses these subsequently inspire, with simpler scenes,326

embodying fewer extraneous or coincidental patterns being more likely to inspire the327

learner to generate the true concepts.328

position�). Indeed, around 20% of the hypotheses generated by our PCFGs are tautologies, and 15% are
contradictions. Many others combine a meaningful hypothesis with a tautological corollary (i.e., �There is
a large red object that is larger than all medium sized objects�).
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Figure 2
a) Example generation of hypotheses using the PCFG. b) Examples of IDG hypothesis
generation based on an observation of a scene that follows the rule. New additions on each
line are marked in blue. Full details in Appendix A.

Hypothesis-driven scene generation329

Uncertainty-driven learning330

Normatively, test scenes should serve to minimize expected uncertainty across the331

full hypothesis space. A direct way to approximate this here is to start with a prior sample332

of hypotheses (e.g. drawn context-free) and progressively create scenes that serve to333

minimize expected uncertainty over this sample by forking their predictions (Bramley et334

al., 2022; Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 2014). We visualize this335

in Figure 3a, imagining three labelled scenesd1 : : : d3 that progressively divide a prior336

sample of hypotheses (hs) until a most-likely candidate emerges. The constructivist setting337

presents a challenge for this norm since the hypothesis space is latent and is initially338

unexplored.339

Exploration-driven learning340

An alternative hypothesis-free approach might be to explore the data space directly,341

for instance generating scenes that vary in the number and nature of objects they contain342

in the hope of naturally uncovering concept boundaries and inspiring hypothesis343

generation. We sketch this in Figure 3b. E�cient uncertainty-driven and344

exploration-driven learning both predict generation of scenes that di�er substantially from345

one another, ideally being anti-correlated so as to cover the space e�ciently (Osborne et346

al., 2012). However this does not seem well matched to constructism, wehere we rather347

think of the learner as entertaining a small but not completely empty set of possibilities348
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