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Abstract

Decades of developmental research have capitalized on the fact that infants are surprised (i.e.,

look longer) at some events but not others. Differences in looking time have been considered to

be a reflection of perceptual discrimination, or a reaction toward witnessing a violation of prior

expectations. Here, we provide an overview of a new perspective on infant surprise that examines

the underlying cognitive processes that drive this response. We suggest that looking time may

reflect sophisticated statistical inference, and we review empirical evidence and computational

modeling results from several recent studies to support this conjecture (Kidd, Piantadosi, & Aslin,

2012; Piantadosi, Kidd, & Aslin, 2014; Sim, Griffiths, & Xu, 2018; Sim & Xu, 2017; T�egl�as
et al., 2011). We also discuss how our view relates to other new developmental research on sur-

prise and learning (Stahl & Feigenson, 2015, 2017) and outline some suggestions for future

research.

Keywords: Looking time; Surprise; Rational statistical inference; Violation-of-expectation method;

Infant cognition; Cognitive development

“What percepts do you have? What knowledge are you born with? How do you learn

about the world?” As students of cognitive development, we would give the world to be

able to pose such intricate questions to young infants, but they simply do not have the

verbal capacity, among many other necessary tools, to satisfy our curiosity about their
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inner world. What infants do have, however, is the ability to explore their environment

with their eyes, right from day one. And decades of developmental research have capital-

ized on such looking behavior to probe the inner workings of an infant’s mind.

Initially, looking time methods were used to evaluate infants’ perceptual capacities,

such as whether infants can perceive forms or color (Berlyne, 1958; Fantz, 1961; Her-

shenson, 1964; Spears, 1966). Visual habituation methods, in which infants are repeatedly

presented with a set of stimuli until their looking to the stimuli decreases to some crite-

rion, also revealed that infants would dishabituate, that is, increase in looking time, upon

being shown a novel stimulus (Fantz, 1964; see Colombo & Mitchell, 2009 and Aslin,

2007 for reviews).

These methods paved the way for the violation-of-expectation paradigm (VOE), which

in the last three decades has become a staple in infant labs for characterizing the initial

state of an infant. With the advent of this tool, researchers have demonstrated that the

human infant is highly competent — we now know that infants possess knowledge in a

variety of domains very early on, such as physical knowledge (e.g., Baillargeon, 2008;

Baillargeon, Li, Gertner, & Wu, 2011; Baillargeon, Spelke, & Wasserman, 1985; Spelke,

Breinlinger, Macomber, & Jacobson, 1992), numerical knowledge (e.g., Coubart, Izard,

Spelke, Marie, & Streri, 2014; McCrink & Wynn, 2015; Xu & Spelke, 2000), statistical

and probabilistic intuitions (e.g., Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson,

2002; T�egl�as, Girotto, Gonzalez, & Bonatti, 2007; Xu & Garcia, 2008), and theory of

mind (e.g., Gergely, N�adasdy, Csibra, & B�ır�o, 1995; Onishi & Baillargeon, 2005).

The underlying logic of the VOE method is as such: By conducting looking time

experiments together with adequate controls, infants’ longer looking at an unexpected

than an expected event indicates that, first, infants possess the expectation being exam-

ined; second, they have detected a violation of that expectation; and third, they are sur-
prised by the violation, measured as increased attention or interest (Wang, Baillargeon, &

Brueckner, 2004; but see Jackson & Sirois, 2009; Sirois & Jackson, 2007). This method

has been traditionally used as a qualitative measure, in the sense that there is typically

only a binary set of events/stimuli, and in the ideal situation, infants look longer at one

but not the other, suggesting surprise.

In this paper, we provide an overview of a new way of thinking about looking time

responses, focusing on examining the underlying cognitive processes. We argue that look-

ing time may reflect sophisticated statistical inference, captured by Bayesian probabilistic

models. We will provide preliminary empirical and computational modeling evidence in

support of this conjecture. We will also discuss other recent developmental work on sur-

prise and learning, and outline some suggestions for future research.

In the last few years, several studies have modeled patterns of looking times in a quan-

titative manner and argued that we can use a combination of empirical research and com-

putational models to best understand the nature of looking time (Kidd et al., 2012;

Piantadosi et al., 2014; Sim & Xu, 2017; Sim et al., 2018; T�egl�as et al., 2011). These

studies follow from research in the last decade or so that has demonstrated that the preci-

sion afforded by computational models may give us a great additional tool for studying

developmental phenomena (e.g., Gopnik & Wellman, 2012; Gopnik et al., 2004; Perfors,
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Tenenbaum, Griffiths, & Xu, 2011; Xu, 2016; Xu & Kushnir, 2012, 2013; Xu & Tenen-

baum, 2007).

In T�egl�as et al. (2011), researchers presented infants with dynamic displays of three

objects of one type (e.g., blue objects) and one object of another type (e.g., yellow

objects) bouncing inside a container. They recorded infant looking times for the outcomes

of 12 different events that were generated using a combination of three factors: (a) how

long the container was occluded for before an object exited, (b) whether a majority or

minority object exited, and (c) the physical arrangement of the four objects just before

occlusion. The results showed that the average looking times of 12-month-old infants

were systematically related to the predictions of an ideal Bayesian learner computing 1 –
P(outcome), where P(outcome) was the probability of observing a particular object type

(i.e., a blue object or a yellow object) exiting the container. This model explained 88%

of the variance in infants’ looking times to the 12 different events. Besides demonstrating

that infants can integrate numerosity, spatial, and temporal cues to form rational expecta-

tions about novel events, the findings also indicated that patterns of looking time may be

driven by a computation of event probabilities. Infants were surprised by low-probability

events, looking longer at these events compared to high-probability events.

Kidd et al. (2012) likewise found this relationship between looking behavior and event

probability for 8-month-old infants. Their results indicated that infants’ probability of

looking away during a visual sequence was predicted by the complexity of the sequence,

formalized as the negative log probability of observing a specific event given the distribu-

tion of previously observed events. More specifically, infants tended to look away when

an observed event had very low complexity (i.e., very high in probability given previ-

ously observed events) or very high complexity (i.e., very low in probability given previ-

ously observed events). Even more striking, the modeling results held up within

individual infants and was not an artifact of averaging infants with different types of

behavior (Piantadosi et al., 2014).

Our recent work builds upon these earlier results indicating that infants’ looking times

are well predicted by the probability of observed events (Kidd et al., 2012; Piantadosi

et al., 2014; T�egl�as et al., 2011). We hypothesized that the cognitive processes that drive

infants’ looking times may be more sophisticated, in that infants may have the ability to

go beyond considering the mere probability of observed events. Specifically, we hypothe-

sized that the level of surprise shown by infants, as measured by their looking times, may

be predicted by infants considering alternative hypotheses that could account for the

observed data.

Under this account, observed events are considered surprising not simply because they

are low in probability, but because their occurrence is more consistent with a set of alter-

native hypotheses being true than that for the original hypothesis. Within a context of die

rolls, a sequence “1, 1, 1, 1” has the same probability as a sequence “2, 4, 3, 6,” but we

consider the former to be far more surprising because it provides more support for a set

of alternative hypotheses, such as the die is loaded, or the die has the number “1” on all

its faces, and so on, as compared to our original hypothesis, that the die is fair. This pro-

posal follows a Bayesian account of the sense of coincidence in adults (Griffiths &
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Tenenbaum, 2007) and is congruent with principles of Bayesian learning (Griffiths, Cha-

ter, Kemp, Perfors, & Tenenbaum, 2010; Tenenbaum & Griffiths, 2001; Tenenbaum,

Kemp, Griffiths, & Goodman, 2011): The ideal learner begins the learning process by
assessing the fit between the observed evidence and her current highest-probability
hypothesis and compares it to the fit provided by a set of lower-probability hypotheses.

To test this, we used a combination of behavioral experiments and computational mod-

eling. In a series of experiments, we familiarized 8-month-old infants to a population box

containing six different–colored balls. An experimenter then tossed out different sequences

of balls from the box (sampling with replacement). For example, infants observed

sequences of balls such as “yellow, yellow, yellow, yellow” or “orange, green, blue, yel-

low.” Looking times for the various sequences were measured. Using this method, infants

were presented with a total of 10 different sequences. These looking times were then com-

pared to a Bayesian model that posits that infants may implicitly evaluate the support that

an observed sequence provides for a set of alternative theories as compared to the cur-

rently favored theory, which is termed the likelihood ratio. An event with a likelihood

ratio greater than 1 indicates that the event would be much better accounted for by alterna-

tive theories, and thus generates longer looking times in infants during VOE experiments.

Therefore, under this account, surprise increases as likelihood ratio increases. We found

that the Bayesian model provided a high quality of model fit, performing far better than

several alternative models that were tested (see Supplementary Material). This finding sug-

gests that when infants observe events in their environment, they reason in a manner that

is consistent with evaluating those events according to how well they support different

hypotheses. Observing a sequence of balls “yellow, yellow, yellow, yellow” prompts long

looking times in infants because it better supports a set of alternative theories (e.g., the

box has a hidden compartment containing many yellow balls; the yellow balls are heavier

therefore more likely to fall out, etc.) as compared to the currently favored theory (i.e., the

balls are being randomly sampled from the box). On the other hand, observing a sequence

of balls “orange, green, blue, yellow” prompts short looking times in infants because the

likelihood ratio is small—the observed sequence provides far more support for the cur-

rently favored theory than the set of alternative theories. This form of inferential reasoning

is an important first step in enabling the infant to move toward theory building and theory

revision, allowing her to form the best generative model for the data observed in the world

(Sim & Xu, 2017; Sim, Griffiths, & Xu, unpublished data).

In another study, we replicated a part of these results with 13-month-old infants,

namely that infants would look longer at a uniform sequence of balls (e.g., yellow, yel-

low, yellow, yellow) being tossed out of a box containing six different-colored balls, as

compared to a variable sequence of balls being tossed out (e.g., orange, green, blue, yel-

low). We then used an exploration measure to investigate the downstream consequences

of observing a surprising event. We presented 13-month-old infants with two boxes, each

containing six different–colored balls. From one of the boxes, infants observed a uniform

sequence of balls being tossed out, while from the other box, infants observed a variable

sequence of balls being tossed out. When these boxes were later presented to the infants,

we found that infants preferentially approached and explored the source of the surprising
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event, that is, the box that had generated the uniform sequence of balls. These results

indicate that infants spontaneously explore sources that violate their expectations, poten-

tially providing themselves with new learning opportunities (Sim & Xu, 2017).

Overall, recent work in our laboratory demonstrates that infants’ surprise response, as

indicated by looking times, is driven by an evaluation of how well observed data support

different hypotheses, and that such an evaluation has downstream consequences on

infants’ exploration, potentially influencing future learning.

So far we have provided a computational level of analysis for how an ideal learner

should evaluate evidence against alternative hypotheses. By using a fairly abstract and

domain-general task of random draws from an urn, we are able to provide good quantita-

tive fits between the empirical results and a Bayesian probabilistic model. This line of

reasoning opens up many new research questions, most important, how do learners gener-

ate alternative hypotheses and revise their beliefs?

As far as we know, no empirical studies with infants have tried to answer this question

directly. We see a number of possibilities in how young learners may generate alternative

hypotheses in order to revise their beliefs. First, infants may decide, especially with more

data, that it was just a blip in the system — that is, extraneous factors produce the sur-

prising data that are observed, and no belief revision is necessary. In our example, if an

infant observes over and over again that a sequence of different–colored balls is randomly

drawn from the box and occasionally a sequence of same–colored balls is drawn, then no

revision is needed in their understanding of random events and probability. Second, as

more evidence accumulates, infants may entertain the possibility that the urn is rigged, so

an extra variable is needed in order to explain the observed data. This may be the begin-

ning of minor belief revisions. Third, with more evidence, infants may decide to overhaul

their whole theory of probabilistic reasoning, resulting in genuine conceptual change. It is

unlikely that one piece of surprising evidence will change how infants reason about ran-

dom events, but if more surprising data accumulate over time, infants may begin to enter-

tain alternative hypotheses that could result in major belief revisions.

Alternatively, as Maguire, Moser, Maguire, and Keane (this volume) suggest, learners

may use a heuristic such as randomness deficiency to detect anomalous events. That is,

people are surprised if they find patterns when their current model predicts only random

noise. Furthermore, this conception of surprise may be formalized using Algorithmic

Information Theory, and there is empirical evidence that people’s behavior accords well

with this formal measure. The Maguire et al. account may provide a different interpreta-

tion of the infant looking time results we have discussed above (Sim et al.): Infants may

be surprised at a sequence such as yellow, yellow, yellow, yellow compared with a

sequence such as yellow, blue, green, purple because the former suggests non-random-

ness. Note that this view does not posit that the infant entertains any alternative hypothe-

ses. The empirical evidence to date does not distinguish between these two accounts;

these different theoretical perspectives offer a fertile ground for more fine-grained investi-

gations of surprise in both adults and infants in future research. One interesting possibility

is that a young learner may detect anomalies based on the randomness deficiency heuris-

tic — this is the first step. Then the learner needs to go further in deciding whether the

158 Z. L. Sim, F. Xu / Topics in Cognitive Science 11 (2019)



anomaly warrants belief revision by considering alternative hypotheses and how much

support is provided by this new piece of evidence.

The studies reviewed above all point in the same direction, that looking times reflect

rational statistical inference (not merely a binary response that researchers can use as a

reliable dependent measure), and they all hint at the possibility that surprise, construed as

such, will provide opportunities for future learning. However, none of these studies have

provided direct evidence for downstream learning after measuring surprise. Much to our

delight (and surprise!), Stahl and Feigenson (2015, 2017) have developed new, ingenious

methods to investigate what infants can learn after a surprise reaction, tackling these

questions head on.

Stahl and Feigenson (2015) start with the observation that an infant’s environment is

highly complex. The surprise engendered by detecting an expectation violation helps

infants to clarify their learning space, enabling them to know which aspects of their world

to attend to and to learn from. In four experiments, Stahl and Feigenson (2015) demon-

strated that after witnessing a violation of expectation, such as seeing a toy car pass through

a solid wall, 11-month-old infants showed better learning of a hidden auditory property of

the violation object. They also found better learning for the violation object but not for a

novel object presented after the violation event, suggesting that the enhanced learning was

not due to a general increase in attention or a preference for novelty. Finally, they also

showed that these infants were more interested in playing with the violation object as com-

pared to a novel object, and they engaged in behaviors that were directly related to the

specific violation event that they observed. For example, the infants spent more time bang-

ing the violation object instead of dropping the violation object after observing a solidity

violation, and this pattern was reversed after infants observed a support violation. These

results suggest that infants recognize violation events to be a signal for special learning

opportunities. The differential learning rate that infants showed after observing unexpected

and expected events is very impressive. As the authors suggest, “expectancy violations

offer a wedge into the problem of what to learn” (Stahl & Feigenson, 2015, p. 91).

Stahl and Feigenson (2017) found parallel results with 3- to 6-year-old children in a

different domain, namely word learning. Using similar methods, their results showed that

children learned the referents of novel nouns and verbs after witnessing a violation (e.g.,

spatiotemporal continuity), and they did not learn the new words after witnessing a novel

event that did not violate any principles of intuitive physics. Furthermore, the enhanced

learning effects were specific to the objects involved in the violation events, and not the

result of general arousal.

These are truly innovative and elegant experiments that open up new ways of thinking

about surprise and learning in cognitive development. One characterization of these find-

ings is the following: Increased focused attention (i.e., longer looking time that reflects

surprise) enhances infants’ subsequent learning of a non-obvious property (e.g., internal

sound, word) of the object that has violated a principle of physical reasoning. As Stahl

and Feigenson pointed out, many questions remain about how domain-general these find-

ings are, and whether less or more extreme violations would also result in enhanced

learning.
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In the last section of this review, we discuss three implications of these new lines of

research on looking time, surprise, and learning in infants, and suggest new directions for

future theoretical and empirical work.

One important question raised by all the recent research reviewed above is the type of

learning that occurs after infants observe a surprising event. In Stahl and Feigenson (2015),

infants showed enhanced learning for a hidden auditory property of an object that had par-

ticipated in a violation event, and in Stahl and Feigenson (2017), young children showed

enhanced learning of novel nouns and verbs. The learning that occurs centers on the entity

that had violated their expectation; the infant is now attuned to any new, arbitrary piece of

information that is available about the specific violation object. Within the rational statisti-

cal inference framework, the type of learning that occurs after infants witness a violation of

prior expectations may center on belief revision and conceptual change. Since we assume

that infants are building causal, generative models of the world of a particular domain, that

is, intuitive theories (Carey, 2009; Gopnik & Meltzoff, 1997; Gopnik & Wellman, 2012;

Tenenbaum et al., 2011; Xu & Kushnir, 2012, 2013), surprising data may serve as a driving

force for theory change. These two approaches, however, may complement each other. The

striking findings of Stahl and Feigenson (2015, 2017) — that infants and young children

experience enhanced learning of a somewhat arbitrary piece of information associated with

the violation object — may be the first step in belief revision and theory change. So far

enhanced learning has only been demonstrated for a particular violation object, but infants

may subsequently believe that all objects that make the same novel sounds will produce a

solidity violation. By connecting different pieces of knowledge and inferences, infants may

begin to revise their intuitive theory about the physical world.

A second important open question is the nature of the surprise response. Past studies

have largely assumed that surprise (reflected in longer looking time) is binary — either

infants are surprised or they are not. The quantitative computational modeling efforts sug-

gest otherwise — surprise is graded, and the gradedness is indicative of the level of sur-

prise, predictability, and the plausibility of alternative hypotheses (Kidd et al., 2012;

Piantadosi et al., 2014; T�egl�as et al., 2011; Sim et al., unpublished data). In particular,

Kidd et al. (2012) suggest that extremely surprising and unpredictable events result in the

infants turning away, and giving up since they may view these as truly random and an

unlikely source of learning. As Stahl and Feigenson (2017) pointed out, their focused-

attention-enhances-learning findings may be extended and integrated into a rational statis-

tical inference framework of Kidd et al. (2012). Suppose the object that violates solidity

also floats in mid-air and undergoes unexpected featural change, would infants still show

enhanced learning, or would they give up in the face of multiple violations of core

beliefs?

The third important open question is how surprise may help infants gauge what to learn

in a cluttered environment. Stahl and Feigenson (2015, 2017) have demonstrated elegantly

that violations of core knowledge principles (e.g., solidity, continuity) enhanced learning in

infants and young children. In real life, many surprising events happen and infants (indeed

all learners) may be surprised to different degrees by different events, for example, being

surprised that someone radically changed her hairstyle versus being surprised that the sun
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did not rise on July 13, 2018. In other words, not all surprises are created equal; only some

surprises are worthy of further investigation and provide potential learning opportunities.

Our suggestion is that the rational statistical inference framework may help learners decide

which surprising events may be more valuable for learning than others. In our work, surpris-

ing events are considered more valuable if they provide support for alternative hypotheses,

relative to how much support they provide for the currently held hypothesis. In Kidd et al.

(2012), surprising events are considered more valuable if they are at a mid-level of com-

plexity and predictability. Both of these suggestions, however, have been stated at an

abstract algorithmic level. The challenge for future research will be to generate empirical

studies that investigate these possibilities more directly.

For the past few decades, looking time has been used to index and characterize

infants’ pre-existing knowledge. In contrast, the two new lines of work reviewed here

examine the role surprise plays in advancing an infant’s cognitive development, shedding

much-needed light on a question that has remained largely ignored in the infant cognition

literature. These new approaches provide empirical support for the view that surprise has

consequences for early learning, enabling the infant learner to construct a more accurate

model of the world. The empirical findings and computational modeling results comple-

ment work on surprise and learning in adults (e.g., Munnich & Ranney, this volume), and

work on prediction error in non-human animals (e.g., Holland & Gallagher, 2006). The

research reviewed here represents exciting new directions for the study of surprise and

learning in cognitive development. We believe that further theoretical, computational, and

empirical work will generate new insights and help us develop a full account of why

infants are surprised and how they learn.
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Appendix 

To characterize the underlying processes that give rise to different levels of looking, 

we formalize two accounts using probabilistic models: 1) a mere probability model and 2) a 

Bayesian inferential model. As the assumptions of each model are outlined explicitly, we can 

calculate the predictions made by these models and thus determine which model best 

accounts for infant looking times. For these models, h is a hypothesis, d is a specific sequence 

of balls observed, k is the number of uniquely colored balls in the large population box, and N 

is the number of independent draws from the box. 

Mere Probability Model 

First, infants could simply consider low-probability events to be surprising given their 

current expectations. This account is intuitive, as we tend to consider surprising events as 

having a low probability of occurrence. Furthermore, previous studies have demonstrated that 

infants as young as 6 months do look longer at low-probability events as compared to high-

probability events (Denison, Reed, & Xu, 2013; Téglás et al., 2011; Téglás, Girotto, 

Gonzalez, & Bonatti, 2007; Xu & Garcia, 2008). This model thus predicts that infants’ 

looking times will be closely related to the mere probability, P(d|hrandom), of individual 

sequences of balls, d, given hrandom, the hypothesis that the balls are being tossed out 

randomly from the box. We use the negative log probability of these events, as this measure 

quantifies how surprising it is to see a particular outcome (Kidd et al., 2012). The probability 

of the sequences is 

,               

(1) 

as the probability of each color is inversely proportional to the number of colors k and the 

draws are assumed to be independent. 
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Bayesian Model 

Infants may evaluate the evidence that a certain sequence, d, provides for the 

alternative theory, as compared to the currently favored theory, P(d|halternative)/P(d|hcurrent) (the 

likelihood ratio; Griffiths & Tenenbaum, 2007), in a process that is consistent with principles 

of Bayesian learning (Griffiths et al., 2010; Tenenbaum & Griffiths, 2001; Tenenbaum et al., 

2011). For our experiments, hcurrent refers to the currently favored hypothesis that sampling is 

random (i.e., hrandom), as the experimenter appears to have no control over the outcome of the 

tosses from the box. The alternative hypothesis, halternative, is thus that sampling is not random 

(i.e., hbiased).  

Assuming each biased distribution is equally likely, a derivation yields the likelihood 

ratio 

.                            

(5) 

A likelihood ratio larger than 1 indicates that there is a greater probability of observing event 

d under the alternative theory than the currently favored theory. Under this model, an event 

becomes more surprising as the likelihood ratio increases. For example, the probability of 

observing a ball pass through a wood panel is virtually zero given our solidity expectations: 

objects move only on unobstructed paths (Spelke et al., 1992). When such an event is 

observed (typically only in an infant VOE experiment), the likelihood ratio is practically 

infinite since the event is much better accounted for by alternative hypotheses. As such, a 

solidity violation would produce longer looking times in infants. 

Model Predictions 

These models make different predictions, which we test in two looking time 

experiments. In Experiment 1 (Figure 1A), we considered two sequences of balls randomly 
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sampled from a population of 6 different colored balls: a uniform sequence (e.g. orange, 

orange, orange, orange), and a variable sequence (e.g. red, green, blue, orange). As the two 

sequences are equal in probability given random sampling, the mere probability model 

predicts that looking times should not be different for the two sequences. However, the 

Bayesian model predicts otherwise: infants should look longer at the uniform sequence 

because it has a higher likelihood ratio. 

 

In Experiment 2 (Figure 1B), we considered sequences of different lengths, e.g. a 

uniform sequence of 3 balls, and a variable sequence of 6 balls.  The mere probability model 

predicts that infants should look longer at the variable sequence as it is a lower probability 

event. In contrast, the Bayesian model predicts that infants should look longer at the uniform 

sequence, as it continues to have a higher likelihood ratio. 

Results from Experiments 

Experiment 1. Forty 8-month-old infants were tested, half in the Experimental 

condition and half in the Control condition. In the Experimental Condition, on each 



Familiarization trial, the box containing 6 different-colored balls was shown to the infant.  

The Test phase consisted of two test trials, a Uniform trial and a Variable trial (Figure 1A).  

The Control condition was the same as the Experimental condition, except that on the test 

trials, the balls were pulled out of the experimenter’s pocket instead of the box.  Looking 

times for the test trials were analyzed using a 2 x 2 repeated-measures ANOVA with 

Condition (Experimental vs. Control) as the between-subjects factor and Trial Type (Uniform 

vs. Variable) as the within-subjects factor. There were no main effects. There was a 

significant interaction between Condition and Trial Type, F(1, 38) = 11.58, p = .002,  = 

.23. In the Experimental condition, infants looked significantly longer in the Uniform trial (M 

= 13.68s, SD = 9.87) than the Variable trial (M = 10.22s, SD = 6.35); in the Control condition 

infants looked significantly longer in the Variable trial (M = 15.96s, SD = 9.02) than the 

Uniform trial (M = 10.14s, SD = 6.01).  

Experiment 2. Forty 8-month-old infants were tested, half in the Experimental 

condition and half in the Control condition.  Design and procedure were similar to those of 

Experiment 1, except that the Uniform sequence now consisted of 3 balls of the same color, 

and the Variable sequence consisted of 6 balls of different colors (Fig. 1B).  A repeated-

measures ANOVA with Condition (Experimental vs. Control) as the between-subjects factor 

and Trial Type (Uniform vs. Variable) as the within-subjects factor was performed on the 

obtained looking times. There were no main effects. There was a significant interaction 

between Condition and Trial Type, F(1, 38) = 12.16, p = .001,  = .24. Infants in the 

Experimental condition looked significantly longer in the Uniform trial (M = 14.07s, SD = 

7.55) than the Variable trial (M = 9.91s, SD = 6.07); infants in the Control condition looked 

significantly longer in the Variable trial (M = 16.76s, SD = 8.88) than the Uniform trial (M = 

13.06s, SD = 6.02).   

Quantitative Analysis 
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Next we correlated infants’ looking times from Experiments 1 and 2 with the model 
predictions.  The Bayesian model provided a high quality of model fit (r = .96, df = 8, p = 
.0002). The predictions correlated well with the looking times, unlike that of the mere 
probability model (r = .53, df = 8, p = .32).   
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