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All students of cognitive development agree that the central questions in

development are 1) specifying the initial state of a human infant, 2) specifying the final

state of development for a human adult, and 3) specifying how to get from the initial state

to the final state.  Then academic disputes ensue.

Cognitive developmental psychologists are roughly divided into two camps: those

who are more or less nativists and those who are more or less empiricists.  Some

psychologists do not like these terms, and some alternatives are “those who believe in

innate knowledge” and “those who believe in learning,” or “those who believed in initial

conceptual knowledge” and “those who believe in initial perceptual capabilities.”  This

division is also correlated with whether a researcher believes in domain specificity or not:

nativists tend to argue for domain-specific knowledge (even at the beginning of

development) and domain-specific learning mechanisms; empiricists tend to argue for

domain-general learning mechanisms that may result in domain-specific knowledge some

years into development (for some representative explications of these views, see Carey &

Spelke, 1994; Cosmides & Tooby, 1994; Elman, Bates, Johnson, Karmiloff-Smith, Parisi,

& Plunkett, 1996; Hirschfeld & Gelman, 1994; Karmiloff-Smith, 1992; Gopnik &

Meltzoff, 1996; Keil, 1989; Pinker, 1994; Smith, 2001; Spelke, 1994; among others).

Since Piaget was the developmental psychologist for much of the 20th century, his

views were very much the mainstream and much of the literature on cognitive

development in the last 20 years considered Piagetian conceptions of development as the

starting point.  Many researchers sympathetic to nativism have argued that Piaget was

wrong in assuming that the infants were tabula rasa (or blank slates).  Infants may indeed
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have object permanence very early in development and they may even possess systems of

knowledge such as intuitive physics, intuitive psychology, and a language faculty that

that embodies a universal grammar and a language acquisition device.  Many empirical

results have been reported to support this view, and some have suggested that much of

later development is largely just enrichment (a la Plato or Chomsky).  In contrast,

researchers sympathetic to empiricism have argued that Piaget may still be fundamentally

right about the initial cognitive state of the infants, and they offer alternative

interpretations of the many nativists’ demonstrations of early competence in infants.

Furthermore, these researchers often emphasize the role of learning.  They have reported

many empirical studies to support the idea that infants and young children possess

powerful learning mechanisms that allow them to gather statistical information from the

environment and this is the basis for qualitative shifts in development.  By providing

demonstrations of learning mechanisms (be they associative, correlational, or whatever),

these researchers argue that it is not necessary to posit innate knowledge.  The high-level

concepts and domain-specific knowledge we see later in development can emerge from

perceptual primitives (a la Hume or Locke).

 The dichotomy posed above between nativists and empiricists pits two things

against each other: 1) how much innate knowledge is given and 2) how powerful the

child’s learning mechanisms have to be.  The basic assumption is that if a lot of innate

knowledge is given, then we need not worry too much about learning mechanisms or the

role of input statistics; on the other hand, if very little innate knowledge is given, then we

should focus on characterizing learning mechanisms and the role of input statistics from

the environment.
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There is no doubt that this dichotomy has generated much interesting theoretical

and empirical work (for a clear explication and review, see Spelke & Newport, 1998),

thus it has been useful in advancing the field of cognitive and language development.

Nonetheless, many researchers have argued for a middle ground – after all, we all believe

in some innate stuff (but we may disagree on whether we should call it “concepts” or

“knowledge”) and we all believe in learning (but we may disagree on whether learning is

enrichment or whether learning can bring about fundamental changes in the child’s

conceptual system).  The difficulty in taking the middle ground is that it is easily

perceived as being wishy-washy.  One reason is that researchers have not committed

themselves to a set of learning mechanisms, or perhaps the types of learning mechanisms

posited (e.g., correlational learning) seem relatively simple and perhaps insufficient for

acquiring the representations and knowledge we see later in development.  Without a

strong commitment to what kinds of learning mechanisms are available to the child, it is

difficult to spell out any details in answering the crucial question of how to get from the

initial state to the final state of development.

In this paper, I advocate a view that is hopefully a substantive middle ground, one

that commits us to a set of learning and inference mechanisms that may be critical for

learning and development.  I dub this view “rational constructivism.” I appeal to

mechanisms of statistical inference as a means to bridge the gap between discussions of

innate knowledge and discussions of learning and conceptual change.

Why might this approach allow us to make progress towards a more

comprehensive theory of cognitive development?  One reason is that the fundamental

tension between the nativist and the empiricist viewpoints is the lack of inductive
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inference mechanisms.  Much of human learning in the real world is inductive learning,

i.e., the learner makes generalizations or draws conclusions based on data, often times

sparse or a relatively small amount of data.  For example, a human child hypothesizes the

meaning of a new word with just one or a few exposures (e.g., Quine, 1960; Bloom,

2000; Carey, 1978; Markman, 1989).  A human child induces complex grammatical rules

based on very little data, i.e., listening to the mature speakers around them for a couple of

years (e.g., Gleitman, 1990; Pinker, 1989; Wexler & Cullicover, 1980).  A human child

learns the rules of physical support with only a few trials (e.g., Baillargeon, 2002; Wang

& Baillargeon, 2005).  A human child uses language to infer hidden properties of an

object with just a few examples (e.g., Gelman, 2003).  Although sometimes children do

require many repetitions and a lot of data (e.g., learning the irregular past tense forms of

English, memorizing the multiplication table), most of the time they are willing to make

the inductive leap based on fairly limited amount of evidence.  However, much of the

literature on cognitive development lacks any commitment on what kinds of inductive

inference mechanisms are available to the child and how these mechanisms may explain

developmental changes.  This gap in the literature may partially explain why the dialogue

between nativists and empiricists has not gone very far over the years.  The principal

learning mechanism I appeal to is based on general principles of Bayesian inference,

much studied in the philosophy of science (e.g., Howson & Urbach, 1989) and within

psychology, in computational vision, reasoning, and language processing (e.g., Chater,

Tenenbaum, & Yuille, 2006; Tenenbaum, Griffiths, & Kemp, 2006; Yuille & Kersten,

2006; see also Gigerenzer & Hoffrage, 1995).
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What is Bayesian inference?

Bayesian inference is a formalism that allows a learner to combine prior

knowledge (in the form of biases/constraints) with statistical information in the input in

order to estimate how likely it is that a hypothesis (H) is true given the data (D) at hand.

Here I put forth a simplified version of Bayes’ rule to illustrate the conceptual point:

p (H) x p (D|H)
p (H|D) =  ---------------------------

     p(D)

(We can safely ignore p (D) because it is independent of H and it only serves to

normalize the sum of all p(H|D) to be 1, that is, the hypotheses are mutually exclusive

and exhaustive.)

Thus we are left with three components:

1) Priors, p(H): the probability of a hypothesis in the absence of any observed

data.  In order to assess p(H), the learner needs a hypothesis space, e.g., object

categories as potential referents of count nouns.  The computations include

biases, constraints, and knowledge that a learner brings to a particular task or

learning situation; they may be innately given or they may be learned (e.g., the

shape bias in word learning);

2) Likelihood, p(D|H): the probability of the data given the hypothesis.  This

includes assumptions about how likely the data are observed if we make some

educated guesses about the sampling condition (e.g., random sampling vs.

non-random sampling).  The statistical information in the input is critical in

computing the likelihood.
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3) Posterior, p(H|D): Combining priors and likelihood, we can derive posterior

probabilities that give us a quantitative measure of how likely it is that a

particular hypothesis is true given the observed data.

Why Bayesian inference?  First, this is a well-studied mathematical formalism

that gives us a principled way of combining prior knowledge and input statistics, and it

has been particularly successful in computational vision, a branch of cognitive science

and cognitive psychology.  Second, it may provide a more satisfactory answer to the

question “what are the learning mechanisms?” in cognitive development.  Prima facie it

seems a more promising candidate than standard associative learning (often implemented

as connectionist networks) because a) it explicitly acknowledges the importance of prior

knowledge (note this part may be innate or learned), b) it explicitly acknowledges the

importance of input data (as reflected in the likelihood term), and c) it provides a

principled way of combining the two.  One of the problems with associative learning

mechanisms is that it seems like a ‘brute force’ way of learning, contrary to what we

know about animal or human learning.  Bayesian inference, on the other hand, says that

learners are able to employ “smart” learning mechanisms that allow them to make

generalizations based on a fairly limited amount of data.  Third, if we take the “child as

scientist” metaphor seriously, the inference engine useful for scientific reasoning may be

useful for studying development.  Fourth, methodologically, by laying out the three

components, we have a natural and explicit ‘division of labor’ that makes us to be more

precise about our commitments as scientists.

To illustrate the basic idea of Bayesian inference, I borrow an example from

Tenenbaum (1999).  I will simplify the example somewhat for the purpose of explication.
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Suppose you are told that a simple mathematical rule governs a set of numbers you will

see that are between 1 and 100, e.g., odd numbers, even numbers, all numbers less than

25, all numbers between 37 and 68, powers of 2, all prime numbers less than 100, etc.

You then observe some examples that are randomly drawn from a set of numbers that

conforms to this simple rule.  Let’s say the first number you observe is 16, and you are

asked to rate how likely one of the following rules may be the correct one: a) all even

numbers, b) all odd numbers, c) all numbers between 2 and 60, d) all prime number less

than 100, and e) powers of 2.  It is clear two of the rules cannot be correct: b and d, since

16 is neither an odd number nor a prime number.  As for the other three hypotheses, a, c,

and e, you may feel reluctant to say which one of these is more or less likely to be the

correct rule.  After all, the one example you have seen, 16, is perfectly consistent with

any one of the three rules.  Now you observe a few more examples, 8, 32, and 4.  Now

the set of data you have to make your inference is much richer: 4, 8, 16, and 32.  So

which mathematical rule is most likely to be correct given a, c, and e?  Again, the

examples are consistent with all three rules, but I think most of us will say that e)

“powers of 2” has become the most probable candidate.  Why?  What is the intuition

behind the increase in confidence level (reflected in an increase in probability

assignment) from seeing just one example to seeing a few examples?

What are the prior probabilities for the various hypotheses?  Adults share

intuitions about what counts as a likely hypothesis, e.g., all even numbers, all odd

numbers, multiples of 3, numbers between 20 and 40, prime numbers, etc.  In contrast,

most of us would say that “all even numbers except 54” has a very low prior probability

since it may be considered as “an unnatural rule.” Similarly, “all powers of 2 except 4
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and 64”, “all even numbers plus 13”, and many others also receive low prior probabilities

for the same reason.  That is, among a very large set of logical possibilities, some are

considered a priori more likely than others.  Some rules are psychologically more natural

and plausible to us than others.  This is not to say that we will never consider low

probability hypotheses.  Suppose we observe many examples, including 6, 8, 12, 14, 16,

18, 44, 56, 78, 92, and 13.  We may have no choice but to conclude that the rule is most

likely to be “all even numbers plus 13.”  In the face of a lot of data, we may begin to

weigh the low prior probability hypothesis more and more.  Importantly, we need a lot of

data to convince ourselves that a low prior hypothesis is indeed the correct hypothesis.

How do we calculate the likelihood p(D|H) so we can combine it with the prior,

p(H) to arrive at a posterior probability, p(H|D)?  Our intuition says that although “all

even numbers” is consistent with the set of observed examples (4, 8, 16, and 32),

somehow “powers of 2” is a better candidate.  It seems to us that it would be “a

suspicious coincidence” that we would see these four specific examples if they were

randomly chosen from the whole set of “all even numbers.” Perhaps it is more likely that

we would have seen something like “4, 8, 34, and 56” given the assumption of random

sampling.  On the other hand, there is nothing “suspicious” about seeing these four

examples if they are randomly drawn from the set “all powers of 2.”  The mind is keen in

detecting these “suspicious coincidences” (see many examples from visual perception,

e.g., Knill & Richards, 1996) and this ability becomes part of the inference mechanism to

allow us to make fairly accurate guesses about the structure of the world.   In order to

compute the likelihood, we take into account such “suspicious coincidences.”
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Now we can calculate the posterior probability p (H|D) from these two terms,

p(H) and p(D|H).  Since “all powers of 2” has a fairly high prior probability and a fairly

high likelihood, the posterior probability is also high for this hypothesis.  In contrast,

even though “all even numbers” may have a fairly high prior probability, the likelihood

for this hypothesis is lower due to the general principle of avoiding “suspicious

coincidence.” So the posterior probability will be lower than that of “all powers of 2.”

Importantly, the likelihood term is calculated based on the assumption that the examples

the learner has observed are a random sample of the true hypothesis.

A case study in development: Learning words at different levels of a taxonomy

What is the evidence that language and cognitive development employs Bayesian

inference mechanisms?  With both adult and child learners, there is a growing body of

research suggesting that in domains such as causal reasoning, property induction,

sentence processing, word learning, and syntax acquisition, the behaviors of the learners

can be best accounted for by assuming an implicit Bayesian inference mechanism (see

Chater et al., 2006, Gopnik & Schulz, 2004, and Tenenbaum, et al. 2006 for reviews).

We have conducted two series of experiments with preschool children on how

they acquire the meanings of words that refer to subordinate-level, basic level, and

superordinate-level categories – a much-studied and much-debated topic in early word

learning, and we have built computational models to account for the learning processes

based on the principles of Bayesian inference (Tenenbaum & Xu, 2000; Xu &

Tenenbaum, 2005, in press a, in press b).

Learning words at different levels of a hierarchy has traditionally been considered

a challenge in the literature.  Upon seeing a dog running by and somebody labeling it “A
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blicket!” the child learner faces a difficult induction problem.  Does “blicket” refer to all

and only dogs, all mammals, all German shepherds, this individual dog Max, all dogs

plus all cats, all brown things, the front half of a dog, undetached dog parts, etc.?

Psychologists have borrowed the philosopher Quine’s (1960) famous under-determinacy

problem as it applies to word learning.  Despite this logical problem of induction,

children learn words surprisingly rapidly and quite accurately.  A 6-year-old child knows

an average of about 6,000 words, and most of these are learned by simply observing the

world and listening to mature speakers of the language around them (Bloom, 2000;

Carey, 1982; Markman, 1989).   How is such rapid learning possible?

Models for how children acquire the meanings of words traditionally fall into two

classes. In Xu and Tenenbaum (in press a), we called one class of models “hypothesis

elimination models” and the other class of models “associative learning models.”

Hypothesis elimination models treat the process of word learning as inferential in nature

– the child is assumed to draw on a set of hypotheses about word meanings and to

evaluate these hypotheses based on the input (e.g., Markman, 1989; Siskind, 1996).  In

contrast, associative learning models assume that the child keeps track of word-percept

pairings and adjusts the strengths of these correlations based on repeated exposures (e.g.,

Colunga & Smith, 2005; Regier, 2003, 2005).

Proponents of the hypothesis elimination approach argue that prior constraints

help the learner rule out many logically possible but psychologically implausible

hypotheses.  The whole object constraint, for example, rules out hypotheses such as

undetached dog parts, and the taxonomic constraint rules out hypotheses such as all dogs

plus all cats, or all brown things (Markman, 1989).  After applying these two constraints,
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however, we are still left with the problem of choosing among subordinate, basic-level,

and superordinate level categories, e.g., poodle, dog, and animal, since none of these

three candidate word meanings violates the whole object or the taxonomic constraint.

Thus an additional constraint is needed, namely the basic-level bias, which says that

learners prefer to map words onto basic-level categories.  By invoking the basic-level

bias, the child is able to eliminate all the other hypotheses as candidate word meanings.

However, children do learn words for other levels of the taxonomic hierarchy.  We are

now in need of further stipulations that would allow the child to learn words such as

“poodle” or “animal”.  Psychologists have proposed special linguistic cues as one source

of information to help the child out of this quandary.  For example, parents may say, “See

this?  It is a poodle.  A poodle is a kind of dog” (e.g., Waxman, 1990).  It is not clear if

such special linguistic cues are always available to children, but more generally, it is hard

to imagine that for each word, the learner has to invoke special constraints in order to

zoom in onto the correct meaning.

The associative learning models do not fare better, either.  Existing models in this

school tend not to be able to handle ‘fast mapping’ – the learner’s ability to make a good

guess about a word’s meaning with one or a few positive examples (e.g., Markman &

Wachtel, 1998; Carey & Bartlett, 1978) -- since the principal mechanism of learning is to

keep track of word-percept pairings and adjust connection weights gradually.  Once the

word-percept pairings are established through many trials, these correlations can guide

future generalizations of the new word (Colunga & Smith, 2005; Gasser & Smith, 1998;

Regier, 1996, 2005; Smith, 2000).
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I will argue for an alternative view that combines aspects of both approaches: the

basic architecture is a form of rational hypothesis-driven inference, but the inferential

logic is Bayesian and hence shows something of the graded statistical character of

associative models (Xu & Tenenbaum, in press a).  Confronted with a novel word, the

learner constructs a hypothesis space of candidate word meanings and a prior probability

distribution over that hypothesis space.  Given one or more examples of objects labeled

by the new word, the learner updates the prior to a posterior distribution of beliefs based

on the likelihood of observing these examples under each candidate hypothesis.

In a word learning task, adults and 4-year-old children were given one or a few

examples of novel words.  In the one-example condition, each child received one

example of a new word.  The experimenter picked up an object in a pile, say a terrier, and

labeled it a total of three times, “See? A fep!”  In the three-example condition, each child

received three examples of a new word.  The experimenter labeled a total of three objects

once each.  The perceptual span of the three examples varied from trial to trial --

sometimes they were three slightly different terriers, or three different kinds of dog (e.g.,

a poodle, a Dalmatian and a terrier), or three different kinds of animal (e.g., a dog, a

pelican, and a seal).  Then both adults and children were asked to generalize the word to a

set of new objects.  We were interested in whether children would take into account both

the number of examples (1 vs. 3) and the perceptual span of the examples (subordinate-

level, basic-level, or superordinate-level).

Figure 1 shows the results from adults and children.  We found that in the one-

example condition, adults showed a generalization gradient dropping off at the basic-

level and children showed a generalization gradient without much of a drop-off.  In the
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three-example condition, both adults and children generalized to the most specific level

of category that was consistent with the data.  How would we account for these data in a

Bayesian framework?

-------------------------------------------

Insert Figure 1 about here.

-------------------------------------------

To begin with, we constructed a hypothesis space based on adults’ similarity

judgments of the objects we used in the experiments.  We used these ratings to construct

a hierarchical tree that included various potential hypotheses for the meaning of a new

word.  Some candidates corresponded to subordinate, basic-level, and superordinate

categories; some did not.  To instantiate the idea of detecting ‘suspicious coincidences,’

we also computed the likelihood such that as the number of examples increases, more

specific hypotheses (i.e., smaller ones) are preferred than larger hypotheses that are also

consistent with the data.  This fits with our intuition that if I were to teach a word such as

“animal,” it would be odd if I picked up three different dogs and labeled each of them

with the word “animal.”  Similarly, if I were to teach a word such as “dog,” it would be

odd if I picked up three different terriers, labeled each, and ignored all the other kinds of

dogs.  That is, the learner makes the general assumption that she is getting a random

sample from the true extension of the word.  Figure 2 shows the model results given these

assumptions (for more technical details, see Xu and Tenenbaum, in press a).

-------------------------------------------

Insert Figure 2 about here.

-------------------------------------------
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These studies provide evidence that in a word learning task, children and adults

make inferences according to the basic principles of Bayesian inference.  Note that in our

approach, no special constraints are needed to decide among a set of nested categories

(subordinates, basic-level, and superordinates) and the phenomenon of fast-mapping is

naturally accounted for in the model by assuming that the learner begins with a fairly

small set of hypotheses and a powerful inference mechanism.

In a second set of studies (Xu & Tenenbaum, in press b), we replicated our

previous results using novel objects and we presented a new model that takes into

account a ‘theory-of-mind’ inference in the domain of word learning.  One critical

assumption in the Bayesian framework we presented here is the idea that the learner

assumes a random sample.  Here we manipulated sampling conditions to test this

assumption more directly.  In the teacher-driven condition, adults and 4-year-old children

received three subordinate-level objects as the referents of a new word from the

‘teacher’/experimenter.  This is identical to the three-example subordinate condition of

previous studies (Figure 3).  In the learner-driven condition, however, the ‘teacher’

presented the learner with just one example of the new word.  Then the learner was asked

to pick two more examples, and critically the learner was told that if she got both

examples right, she would get a sticker (a highly rewarding prize for preschoolers, and

apparently for adults too!).  In the latter condition, the learner eventually received three

positive instances of the new word, but they have a different status from the three positive

instances in the teacher-driven condition.  The critical difference is that the ‘teacher’

knew the word but the learner did not.  The learner was inclined to be conservative and

pick out two more examples closest to the first one.  The epistemic state of the learner
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was different from that of the ‘teacher,’ and we predicted that it was only in the teacher-

driven condition that the learner would restrict their generalization to other subordinate

examples, whereas in the learner-driven condition it would be the same if the learner had

received just one example from the teacher.  Figures 3 and 4 presented pictures of the

novel objects and the results from the experiments as well as those from the model.  I do

not have the space to go over the model details here, but see Xu and Tenenbaum (in press

b) for more discussion.

-------------------------------------------

Insert Figures 3 and 4 about here.

-------------------------------------------

Associate models often have trouble accounting for theory-of-mind inferences;

the general tendency is for the proponents of this approach to try to explain away these

inferences (as attentional tuning, for example, Smith, 2001).  The classic hypothesis

elimination approach takes these theory-of-mind inferences seriously, but it lacks a

formal model to integrate these inferences with other constraints.  Here we present the

first step towards a Bayesian model that integrates prior constraints, input statistics, and

theory-of-mind inferences.

Bayesian inference: A domain-general mechanism?

Is the inference mechanism we have investigated in word learning specific to

language?  It is unlikely given that various versions of the Bayesian formalism have been

applied successfully in computational vision, causal reasoning, and language processing

(Chater et al., 2006).  Recently we have completed a property induction study to address

the domain specificity issue in our task (Talbot, Denison, & Xu, 2007).  We adopted the
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same experimental paradigm as the studies by Xu and Tenenbaum (in press a), except

that instead of teaching the child a new word, we taught him/her a new property, e.g., this

one has beta-cells inside.  We used the same set of objects as before, and varied the

number of examples (1 vs. 3) as well as the perceptual span of the examples (subordinate-

level, basic-level, or superordinate-level).  Results from 4-year-old children looked very

similar to the results from the word learning studies.  Children showed a generalization

gradient with one example and sharpened their generalization function with three

examples.  With three examples, the children generalized to the most specific level that

was consistent with the examples they have been shown.  These findings suggest that the

inference mechanism may be domain-general and further research is needed to test how

broadly learners apply these principles.

Basic computational machinery in infants and children

Before we can use Bayesian inference to explain learning and development in

various domains, one might ask whether there is any evidence that children possess any

of the basic computational competences required by Bayesian statistics.  Although a

growing body of research suggests that infants, children, and adults can use powerful

statistical learning mechanisms in language and visual learning, not much has been said

or done with a particular formal inference engine in mind.

Two aspects of this mechanism have been investigated in our laboratory: random

sampling and base rate information.  A series of experiments with 8-month-old infants

have shown that 1) they are able to understand (implicitly) that a sample that is drawn

randomly from a population gives a good clue as to the composition of the whole
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population, and 2) if a population is skewed (base rate information), a random sample

from this population will also be skewed (Xu & Garcia, under review).

These experiments employed the violation-of-expectancy looking time paradigm.

Infants were seated in a highchair facing a puppet stage.  They watched some events

unfold, and at times they were shown outcomes that were either expected or unexpected

given an adult interpretation of the events.  The infant’s looking times were recorded.

The logic behind this method is that if infants had interpreted the events the way adults

would, they should look longer at the unexpected outcome.  Many studies in infant

perception and cognition have successfully used this method in the last two decades (e.g.,

Baillargeon, 2002; Spelke et al., 1992).

In Experiment 1, we asked if 8-month-old infants could use the sample they were

presented to make some guesses as to the composition of the overall population.  After

the infant was seated in the highchair, the experimenter brought out a small container

with several red or white Ping-pong balls.  The infant was handed a few Ping-pong balls

one at a time, and were encouraged to hold them for a few seconds.  This warm up phase

was designed to give the infant some idea for what they might see later on the puppet

stage.  The experimenter returned behind the curtains and sat behind the puppet stage.

Her upper body and her face were visible to the infant.  After calibrating the infant’s

looking window for the observer, the experiment proper began with four familiarization

trials.  On each trial, a large opaque box was brought out, and its front panel was opened.

On alternate trials, the infant saw either a box containing a large number of mostly red

(with a few white ones mixed in) Ping-pong balls or a box containing a large number of

mostly white (with a few red ones mixed in) Ping-pong balls.  Across four familiarization
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trials, the total amount of redness and whiteness was equated for all infants.  Infants were

allowed to look at the content of the box on each trial until they turned away for 2

consecutive seconds.  Eight test trials followed.  On each trial, the experimenter brought

out the same large opaque box and sat it down on the empty stage. She then brought out a

small transparent empty container and placed it next to the large box.  She picked up the

large box and shook it a few times, and the content of the box made some noises.  She

then turned her head away from the box, closed her eyes, and reached into the box

through a top slit.  The slit was covered with white spandex and the experimenter was not

able to see the content of the box through the slit (without pulling the spandex open

deliberately).  She pulled out one Ping-pong ball, say a red one, and placed it into the

small transparent container.  She shook the large box again, looked away, pulled out

another Ping-pong ball through the top slit, and placed it in the small transparent

container.  This sequence of event was repeated a total of 5 times, after which the small

transparent container had either 4 white and 1 red Ping-pong balls, or 4 red and 1 white

Ping-pong balls (on alternate trials).  The order in which the Ping-pong balls were pulled

out was randomized.  The experimenter then opened the front of the large box to reveal

its content, either a box with mostly red Ping-pong balls or one with mostly white Ping-

pong balls (a transparent barrier held the Ping-pong balls so they stayed inside the box

but were visible to the infant).  Half of the infants were shown the mostly red outcome

and half the mostly white outcome on all test trials.  The question was whether after

seeing 4 white and 1 red Ping-pong balls being pulled out of the box, the infants would

expect the box to contain mostly white Ping-pong balls.  The basic assumption behind

this expectation is that what the infant saw in the small transparent container was a
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random sample from the box.  (A rating study with adults confirmed this intuition.  After

viewing these events, adults expected a box with mostly white Ping-pong balls if they

had seen a sample of 4 white and 1 red, and vice versa if they had seen a sample of 4 red

and 1 white Ping-pong balls).  A total of 6 test trials were run.  On alternate trials, either a

sample of 4 white and 1 red or a sample of 4 red and 1 white were shown, and the

outcome for a particular infant was either mostly red or mostly white for all test trials.

Looking times for the outcomes were recorded.  We found that infants looked longer at

the unexpected outcome than the expected outcome, that is, the one that did not match the

sample they had seen.  Experiment 2 replicated this finding with a different ratio in the

sample, 6:1 (6 white and 1 red, or 6 red and 1 white).  These results suggest infants

assumed that the sample they saw was a random sample from the population, therefore

they could use the sample to make educated guesses about the composition of the overall

population.  In Experiment 3, we tested the reverse, i.e., whether 8-month-old infants

could use simple base rate information to predict the composition of the sample.  The

experimental procedure was very similar to that of Experiments 1 and 2, except that at the

beginning of each test trial, the front panel of the big box was opened to show its content,

and the infants were given 5 seconds to look at it.  Again, half of the infants saw the

mostly red contents for all test trials and half the mostly white contents for all test trials.

The front panel was then closed, and a sample was drawn from the box as before.  On

alternate test trials, a sample of 4:1 or 1:4 was drawn, and looking times were recorded

after all 5 Ping-pong balls had been placed into the small transparent container.  If infants

could use base rate information to make predictions about the sample, they should look

longer at the unexpected outcome of 4 white and 1 red than the expected outcome of 4
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red and 1 white if they had been shown a box with mostly red Ping-pong balls, and vice

versa if they had been shown a box with mostly white Ping-pong balls.  The results were

as predicted: the infants remembered the overall content of the big box and they looked

longer when a low-probability sample was drawn from it.  Experiment 4 replicated this

finding with a different ratio, 6:1.  Again, infants were able to use the base rate

information and looked longer at the unexpected outcome that did not match the contents

of the box.  Several methodological cautions were taken to ensure that results reflected an

(implicit) understanding of random sampling and base rate information:  Since no

habituation was used, it was not possible to argue that the infants had learned the correct

answer from habituation; since the same amount of redness and whiteness was presented

during the familiarization trials, it was also not possible to argue that the infants had been

more habituated to one type of outcome than the other.  How do we know that the infants

in fact made a connection between the sample and the population?  Or put it slightly

differently, an alternative interpretation might be that the infants noticed the ratio of the

sample (or the population, as in the base rate experiments), and whenever the ratio

changes, it elicited longer looking times.  In two control experiments, we showed that if

the sample of Ping-pong balls came from the experimenter’s pocket (and not the big box)

and were placed in the small container, the infants did not look longer at the unexpected

outcome.  We suggest that the infants had reasoned about the sample and its relation to

the population, and it was not just a change in ratio between red and white Ping-pong

balls that elicited the longer looking times on the test trials of Experiments 1 through 4.

The results of these 6 experiments suggest that 8-month-old infants may already

have an implicit understanding of the basic assumptions of Bayesian inference.  Young
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infants were able to relate samples to populations and vice versa, making statistical

inferences that seem to obey the basic laws of probability.  Many follow-up studies are

underway to address issues such as how fine-grained these computations are, e.g., are

they heuristics or probabilistic forms of reasoning?

Similar experiments have also been conducted in our laboratory with preschoolers

(Denison, Garcia, Konopczynski, & Xu, 2006; Denison & Xu, under review).  A different

procedure was employed but the basic design was similar.  Four-year-old children were

asked to play a game with a puppet and help the puppet answer some questions.  In the

first experiment, the children were shown pairs of boxes with a different mix of colored

objects.  For example, one pair of boxes contained yellow and blue dog bones.  One box

contained mostly yellow dog bones, and the other contained mostly blue dog bones.

Then behind an occluder, the experimenter reached into one box and drew out a sample

of dog bones.  On some trials the sample consisted of 5 yellow and 1 blue dog bone; on

other trials the sample consisted of 1 yellow and 5 blue dog bones.  Then the child was

asked to help the puppet decide which box the sample came from.  In two experiments,

the preschoolers chose the correct box 61% and 74%, respectively.  Their performance

was significantly better than chance (50%) in both experiments.  Then we asked the

converse question by showing the child the content of the box at the beginning of each

trial, then asking the child to choose between two samples.  The child was asked to

decide which of the two samples came from the box and which came from the puppet’s

house.  In two experiments, the preschoolers chose correctly 69% and 80%, respectively.

Their performance was significantly better than chance (50%).



23

We also showed adults video clips that we presented to infants and children, and

asked them to rate the outcomes as expected or unexpected on a 7 point scale.  Adults had

very clear intuitions about which outcome was unexpected and they behaved similarly to

infants and preschool children.

Two important questions remained unanswered by these studies.  First, are

learners sensitive to sampling conditions?  We assumed that the infants, children, and

adults all took the sampling procedure as a random draw from the population, but we do

not have any direct evidence that a different sampling procedure may produce different

results.  On-going studies try to address this issue by comparing a random sampling

condition with one where the experimenter looked into the box and drew out the samples

deliberately.  As we have seen earlier, we do have some evidence that in the context of

word learning, preschoolers are sensitive to sampling conditions and it has consequences

for how far they are willing to generalize a new word.  Second, what is the underlying

computation in these studies?  Is it something approximating probabilities or is it just a

heuristic?  On-going studies try to address this question by asking infants and

preschoolers to make more fine-grained judgments with different ratios of Ping-pong

balls or dog bones.

To recapitulate, we have reported several series of experiments suggesting that

some of the most basic components of Bayesian reasoning might be present in infants and

young children, as well as adults.  Much work is needed to further specify the nature of

these inference mechanisms.
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Conclusions

In this paper, I have tried to advocate a view that is hopefully a substantive middle

ground between the extreme versions of either nativism or empiricism – a view I dubbed

“rational constructivism.”  This is a view that commits us to some innate (or acquired)

constraints and a set of powerful learning and inference mechanisms that may be critical

for development.  I have appealed to mechanisms of statistical inference as a means to

bridge the gap between discussions of innate knowledge and discussions of learning and

conceptual change.  In particular, I have adopted the general framework of Bayesian

inference and presented some recent research providing empirical evidence for the

psychological reality of these inference mechanisms.

Many questions remain open since this is the beginning of a new research

program.  For example, how does the learner construct the hypothesis space?  Are people

really Bayesian given much of the reasoning literature from the last few decades?  Is the

inference mechanism really domain-general?  Could this learning and inference

mechanism bring about conceptual change?  I will try to give some tentative answers to

these questions in turn.

How the learner constructs the hypothesis space in each learning situation is an

extremely important question.  I think one source for generating hypotheses in the case of

learning words is the part of the learner’s conceptual structure that is concerned with

categories and kinds (Markman, 1989; Xu, 2005).  If language learning is largely a

mapping problem, then the inference mechanism discussed here provides a principled

way of choosing among a set of concepts.  Where do representations of categories and

kinds come from? Some research suggests that these are acquired during the first year of
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life (e.g., Xu, 2002; Xu & Carey, 1996; Xu, Cote, & Baker, 2005), although some of our

core concepts are perhaps innately given, e.g., the concept of an object (Spelke, 1990;

Spelke et al., 1992).  Although I emphasize learning here, the ‘rational constructivist’

view does not eliminate the need for innate concepts.  The infant must start with a set of

perceptual and conceptual primitives, and ways of generating new hypotheses.

Are people Bayesian?  Although much of the reasoning literature suggests ‘no’

(see Kahneman, Slovic, & Tversky, 1982), many have argued in recent years that people

are much more Bayesian than this literature suggests.  For example, Gigerenzer, Chater,

Cosmides and colleagues have provided many demonstrations that people can reason

rationally when they are presented with tasks and formats that are more ecologically

valid, and many of the findings from the heuristics and biases literature have been

reinterpreted in terms of a ‘rational analysis’ (e.g., Cosmides & Tooby, 1996;

Gigenrenzer & Hoffrage, 1995; Oaksford & Chater, 1996; among others).  Furthermore,

recent computational models of visual perception, causal reasoning, and inductive

inference have shown that people’s behaviors are best captured in a Bayesian framework

(see special issue of Trends in Cognitive Sciences, 2006).  One (perhaps obvious) point to

make is that just like other computational mechanisms that have been discovered in the

last few decades, the Bayesian inference mechanism is employed implicitly without

conscious awareness.  An analogy to language may make this point even more

transparent: although most of us are fluent speakers of English, the underlying

computations we carry out in order to understand or produce language are entirely

opaque to us.  Indeed, it has taken linguists and psycholinguists many years of research to

specify these underlying mechanisms.  Similarly, we reason and make decisions everyday
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but the underlying computational processes are just as opaque to us as the mechanisms of

motion detection, walking, or language use.  It is perhaps unsurprising that research has

uncovered sophisticated mechanisms for reasoning as it has in the case of language

production and language acquisition.

Is the Bayesian inference mechanism domain-general, and if yes, in what sense?  I

have suggested throughout this chapter that this is not a mechanism specific to word

learning, or language, or causal reasoning.  However, I am not claiming that the same

token of the Bayesian inference mechanism is used again and again in various domains.

Rather Bayesian inference is a type of learning mechanism that can be instantiated many

times over in the human brain/mind (I thank Peter Carruthers for raising this point).

Lastly, can these inference mechanisms bring about conceptual change?  Perhaps

it is clear how learning proceeds within this framework.  As for conceptual change, it is

an open question.  Some have suggested that applying Bayesian learning algorithms to

Bayes nets (talk about terminological confusion!) may provide a tool for conceptual

change – as learning proceeds, new variables can be postulated and integrated into an

existing network (see Gopnik & Schulz, 2004).

I hope the reader is now convinced that a substantive middle ground is possible –

one does not have to commit to extreme versions of nativism or empiricism in the study

of cognitive and language development.  Furthermore, my collaborators and I have

suggested that infants and children already have a powerful set of learning and inference

mechanisms that are Bayesian in character. This is the beginning of a new research

program, and I hope it will be a fruitful and productive one for years to come.
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Figure caption.

Figure 1. Adults’ and children’s generalization of word meanings in Experiments 1-3,

averaged over domain.  Results are shown for each of four types of example set (1

example, 3 subordinate examples, 3 basic-level examples, and 3 superordinate

examples).  Bar height indicates the frequency with which participants generalized to

new objects at various levels.  Error bars indicate standard errors.

Figure 2. Predictions of the Bayesian model, both with and without a basic-level bias,

compared to the data from adults in Experiment 1 and those from children in

Experiment 3.

Figure 3. (a) A schematic illustration of the hypothesis space used to model

generalization in the experiment, for the stimuli shown in (b). (b) One set of stimuli used

in the experiment, as they were shown to participants.

Figure 4.  Percentages of generalization responses at the subordinate and basic levels, for

adults and children in both teacher-driven (a) and learner-driven (b) conditions.

Corresponding posterior probabilities for subordinate and basic-level hypotheses are

shown for the Bayesian model.
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Figure 1.

Adult data (Experiment 1)

(a) Child data (b) Child data

(Experiment 2) (Experiment 3)

.
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Figure 2.

(a) Bayesian model (b) Bayes w/ basic-

level bias

        (c) Child data (d) Adult data
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Figure 3.

(a)

(b)
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Figure 4.
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