
Children Learn Better When They Select Their Own Data 
 

Zi L. Sim (zi@berkeley.edu) 
Michelle Tanner (michellemtanner@gmail.com) 

Nina Y. Alpert (nalpert@berkeley.edu) 
Fei Xu (fei_xu@berkeley.edu) 

Department of Psychology, University of California, Berkeley 
Berkeley, CA 94703 USA 

 
 

Abstract 

Human learners ask questions, manipulate objects, and 
perform interventions on their environment. These behaviors 
are true of adults, but even more so for young children. 
Recent studies have demonstrated that adults learn better 
under conditions of selection learning, where they can make 
decisions about the information they wish to acquire, as 
compared to reception learning, where they merely observe 
data that happens to be available to them. Yet to date, it 
remains unclear whether this advantage is available to 
children, and if so, does it arise because children can gather 
data in a non-random way? In the current study, we show that 
7-year-old children show superior learning under conditions 
of selection in a category-learning task, and that their 
information gathering is systematically driven by uncertainty.  

Keywords: self-directed learning; active learning; education 

Introduction 
“You’re speaking too loudly! No, that’s too soft; you have 
to speak up!” What volume do these adults mean exactly? 
As a young child, learning how to modulate our speaking 
volume is an important aspect of learning how to socialize 
with others. However, instructions that adults give can be 
quite opaque at times. What is a child to do?  

One solution might simply be to observe what others are 
doing; taking note of the volumes that they are speaking at. 
Or one might choose to actually collect the necessary data: 
try a variety of different volumes (hopefully spread out 
across time!), and observe how mommy responds.  

Children probably use a mix of strategies to learn the right 
volume to speak with, but as can be seen from the above 
example, there are at least two modes of learning that people 
engage in to refine their knowledge about the world: 
reception learning, in which learners merely observe data 
that happens to be available and attempt to find structure 
within them; and selection learning, in which learners are 
allowed to make decisions about the information they wish 
to acquire (Bruner, Goodnow, & Austin, 1956; Bruner, 
1961). 

Much of cognitive research has focused on the former 
mode of learning. Researchers study category and concept 
learning in experiments where they tightly control the 
exemplars that are presented to the participants (e.g. Medin 
& Schaffer, 1978; Shepard, Hovland, & Jenkins, 1961). 
Language learning has also traditionally been examined in 
the laboratory by presenting infants and young children with 
repetitive sentences, speech streams, or word-object pairings 

(e.g. Saffran, Aslin, & Newport, 1996; Waxman & Gelman, 
2009; Xu & Tenenbaum, 2007). 

Selection learning, in contrast, has found its niche mostly 
in the domain of causal learning, because certain causal 
networks can only be distinguished with data gained from 
intervention, rather than mere observation. In other words, 
the data generated by intervention simply cannot be 
acquired through observation. In such cases, researchers 
have empirically shown that se lection learning has distinct 
advantages over reception learning (Sobel & Kushnir, 2006; 
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). For 
example, Sobel and Kushnir (2006) demonstrated that when 
learners observed the data that they generated themselves, 
they were better at learning the underlying causal structure 
than learners who observed data that others generated.  

Recent cognitive research with adults has gone on to 
study this advantage in domains outside of causal learning, 
especially in domains where it is possible to generate the 
same information from both selection and reception learning 
(Gureckis & Markant, 2012). Studies by Castro et al. (2008) 
and Markant and Gureckis (2013) have successfully shown 
that learners benefit from selection in category learning as 
well. In Castro et al. (2008), adults were presented with 
novel 3D shapes that varied continuously only in how spiky 
their edges were. They were told that these shapes were 
alien eggs: spiky eggs would most likely hatch into alien 
snakes, while smooth eggs would most likely hatch into 
alien birds. The task for each participant was therefore to 
find out the precise egg shape (category boundary) for 
which eggs that were any spikier would hatch into snakes, 
while eggs that were any smoother would hatch into birds. 
Critically, participants in a selection condition were allowed 
to choose which eggs they wanted to learn about, while 
participants in a reception condition were presented with 
randomly generated egg shapes. Both groups observed 
whether each egg hatched into a snake or a bird after each 
selection or presentation.  

The results of this study were striking. Participants who 
were allowed to actively select samples to learn about had 
more accurate guesses about the category boundary as 
compared to participants who could only observe samples 
that were randomly generated for them. This result was 
successfully replicated in Markant and Gureckis (2013) 
using a slightly modified procedure. However, these results 
do come with some caveats: the selection advantage is only 
present at low noise levels, i.e. when the spiky and smooth 
eggs reliably hatched into snakes and birds respectively 



(Castro et al., 2008), and in low complexity tasks, e.g. when 
the classification rule is based on only one dimension (e.g. 
spikiness only), rather than multiple dimensions (e.g. a 
combination of spikiness and size). 

The same authors also performed a comprehensive 
analysis aimed at uncovering the psychological processes 
underlying the found selection advantage, concluding that 
learners benefit from selection learning because they can 
gather data in a “non-random, useful way” that maximizes 
their own future learning (Markant & Gureckis, 2013). 

Do these results naturally extend to young children? It is 
indubitable that young children often engage in some forms 
of selection learning; one only needs to recall their incessant 
questions, or their mucking around the house and whatnot. 
Does this effortful form of learning where children have to 
both generate and learn from the data benefit them, as 
compared to the less demanding form of learning where 
they simply observe data that happens to be available to 
them? If so, are the psychological processes underlying the 
selection advantage similar between children and adults? 
When given the opportunity, do children gather data in a 
“non-random, useful way”? Addressing these questions 
would provide insights into the developmental origins of 
selection learning and its underlying mechanisms. 

However, these questions remain mostly unaddressed in 
the literature. At this point, there is still a lack of empirical 
evidence demonstrating that children actually benefit from 
selection, relative to reception. What we do know, though, 
is that young children may be able to gather data in non-
random manner (Cook, Goodman, & Schulz, 2011; Kidd, 
Piantadosi, & Aslin, 2012; Legare, Mills, & Souza, 2013; 
Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 
2014; Ruggeri & Lombrozo, under review; Schulz & 
Bonawitz, 2007; Sim & Xu, 2014). For example, Schulz and 
Bonawitz (2007) showed that preschoolers prefer to explore 
a toy for which the causal structure remained ambiguous to 
them, over a completely novel toy. Nelson et al. (2014) also 
demonstrated that 10-year-old German children had good 
intuitions about how useful various questions would be in 
sequential search tasks that resembled games such as 
“Guess Who?” Children were also able to search adaptively, 
varying their questions according to the statistical structure 
of the environment they were presented with (e.g. when the 
population in a “Guess Who?” game was modified such that 
asking about gender first would no longer be quite as useful, 
children were less likely to ask about it at the beginning). 

But such evidence does not necessarily imply that 
children will benefit from selection over reception when it 
comes to refining their beliefs about the world. Indeed, it 
would be quite a leap to make the claim that just because 
children are exploring in a systematic way, they are learning 
from that form of exploration.  

Furthermore, although Castro et al. (2008) provides a 
formal proof for the advantage of selection learning over 
reception learning in deterministic (noise = 0) environments, 
there is currently no evidence that children are optimal in 
their information gathering either. Without this evidence, it 

is difficult to support a theoretical argument that selection is 
necessarily more efficient than reception for learning. 

To begin examining selection learning in children, at 
minimum, we need to establish three points within the very 
same task: (1) children can learn successfully under 
conditions of selection, (2) they can gather data in a 
systematic manner, and (3) selection learning has distinct 
advantages over reception learning. We address these points 
in the current study by examining whether children perform 
better at a category-learning task when they can select the 
information they wish to acquire, as compared to when they 
are merely presented with randomly generated data. 

In an experimental design inspired by Castro et al. (2008) 
and Markant and Gureckis (2013), 7-year-old children were 
presented with a row of identical worms that were ascending 
in size, and told that the worms live in either a green house 
or a blue house. The house that each worm lives in 
depended on its size, so the goal of the game was to figure 
out the category boundary as quickly as possible in order to 
bring them home before a thunderstorm arrives. Each child 
was randomly assigned to one of two conditions: selection, 
where they could choose sequentially which worms to learn 
about, or reception, where they were presented with 
randomly generated worms one after the other. There were 4 
test blocks, and within each block, children learned about 2 
worms and then were given a classification task. The design 
of this task allowed us to examine the children’s learning 
performance and their information gathering strategy (for 
example, were children taking advantage of feedback 
generated by previously selected worms?) when they are 
given the opportunity to actively make decisions about the 
information they wish to acquire. 

Method 

Participants 
Sixty-four English-speaking 7-year-olds (23 boys and 42 
girls) with a mean age of 88.4 months (range = 74.6 to 
104.3 months) were tested. All were recruited from schools 
and museums in Berkeley, California, and its surrounding 
communities. An additional 8 children were tested but 
excluded due to difficulties in following task instructions 
(e.g. indicating that a worm, which had a little blue reminder 
house beneath it, lived in the green house; N = 6), technical 
error (N = 1), and experimenter error (N = 1). Each child 
was randomly assigned to a Selection condition or a 
Reception condition. 

Materials 
The experiment was presented in the form of an interactive 
PowerPoint presentation. Each presentation sequentially 
showed 3 sets of animals, with each set consisting of 13 
identical animal images that varied only in their size, i.e. 
their heights and widths. 

These animals were arranged from smallest to largest (left 
to right). The animals lived in either a green house or a blue 
house, and these houses were represented by colored images 



placed on the top left and top right of the screen respectively 
(Figure 1). When an animal image was clicked on, it would 
move across the screen towards its designated house, 
disappearing upon arrival. A “reminder house,” which is a 
scaled down version of its house, would then appear in the 
space below where the animal was located previously. 
 
 

 
 

Figure 1: Thirteen worms that can be categorized into the 
green house or the blue house. 

Procedure 
Children were tested individually in our laboratory, a quiet 
room in their elementary school, or in a quiet area at a 
museum. An experimenter sat next to the child to control the 
slide show. The procedure for both the Selection and 
Reception conditions consisted of a demonstration phase, 
and 4 test blocks (each with 2 sampling trials). Each block 
consisted of a sampling phase, followed by a classification 
phase. The experiment lasted about 10 minutes. 

 
Demonstration Phase The demonstration phase consisted 
of two practice trials. These practice trials were to establish 
to the child that (1) the displayed animals lived in one of the 
two houses, (2) the house that each animal lived in was 
determined by an invisible category boundary that divided 
the animals into two groups, and (3) that the boundary 
location was different for each set of animals. 

In the first practice trial, the participant was shown a row 
of 13 spiders that increased in size, together with a green 
house and a blue house placed at the top corners of the 
screen. When the experimenter clicked on each house, a 
flashing box surrounding the spiders that lived in the 
selected house appeared. The experimenter subsequently 
pointed at two spiders, one at a time, asking the child “Does 
this spider live in the green house or the blue house?” The 
experimenter praised the child if he/she answered accurately 
(“Good job!”), and corrected the child otherwise (“No, that 
spider actually lives in the green house!”). 

The second practice trial that followed was identical to 
the first, except that we used a row of frogs instead, and a 
new category boundary. 
 
Test Block: Sampling Phase Children were presented with 
a row of 13 worms. 12 category boundaries were possible, 

but only the 3rd through the 10th boundary were used in this 
experiment. This step was taken to ensure that there was at 
least a small number of worms that lived in each house. For 
each participant, a boundary location was randomly 
generated, and this location was used for all test blocks. 

To begin the sampling phase, the experimenter informed 
the child that she would be asked to figure out which house 
each worm lived in. The experimenter then clicked on the 1st 
and 13th worm, showing that they lived in the green house 
and the blue house respectively. As mentioned above, an 
appropriately colored “reminder house” subsequently 
appeared below the worm that had just been selected. 

An image of a storm then appeared. In the Selection 
condition, the experimenter told the child that there was 
only time left to tap on one worm, and asked the child to 
choose one worm to “figure out which worms live in the 
green house, and which worms live in the blue house”. The 
experimenter clicked on the chosen worm, which moved to 
its given house as determined by the category boundary. 
The child was then told that the storm had not arrived yet, 
so there was still time to learn about another worm. After 
the child made this second selection, the experimenter 
clicked on the worm to show where it lived. Reminder 
houses appeared after each worm was selected. The key 
feature in the Selection condition was thus that the child was 
allowed to independently generate data about the worms in 
order to learn about their category structure. 

In the Reception condition, a program was ran such that 
one worm would be randomly selected at appropriate time 
points. Based on information obtained about children’s 
choices during pilot testing of the Selection condition, the 
script was constrained such that 1) a single worm cannot be 
selected twice within each critical block, and 2) a previously 
selected worm can be reselected in a later critical block. 
Within each test block, two worms were randomly selected 
one after another. Upon being selected, the worm wiggled to 
attract the child’s attention before moving to the house that 
it lived in. Again, reminder houses appeared to provide a 
visual memory aid of where the selected worms lived. The 
key feature in the Reception condition was therefore that the 
child could only observe, but not generate, data about the 
worms to learn about their category structure. 
 
Test Block: Classification Phase After the sampling phase, 
the experimenter informed the child that the storm was 
almost here, so they had to take the rest of the worms home. 
The child was asked to point to all the worms that lived in 
the green house, as well as all the worms that lived in the 
blue house. If the child skipped the classification of some 
worms, the experimenter pointed to each of these skipped 
worms and asked, “Which house does this worm live in?” 
The children’s answers allowed us to determine where they 
believed the boundary was located. After all the worms had 
been classified, they disappeared and the experimenter told 
the child, “Phew, all the worms are safe! But we don’t know 
if they went to their correct houses.” 



The test blocks were repeated until the child had 
classified all the worms correctly, or when the child had 
engaged in 4 test blocks (i.e. viewed a maximum of 8 
worms), whichever occurred first. 

Coding 
In the Selection condition, we recorded the worms that each 
child selected during the sampling phase. We then measured 
the sampling distance, i.e. the distance between each of their 
selections and the true category boundary. For example, if 
the child selected a worm that was adjacent to the category 
boundary (left and right), the sampling distance was 0. The 
sampling distances allowed us to examine how children 
were sampling across time. This measure was recorded in 
the Reception condition as well, although note that these 
“selected” worms were randomly generated. 

For each child, we also obtained a classification accuracy 
score for all test blocks. Each correctly classified worm was 
scored as 1 point, so the maximum score in each block was 
13. The children’s scores were then converted into a 
percentage of classification accuracy. 

Results 
An alpha level of 0.05 was used in all statistical analyses. 
Preliminary analyses found no effects of gender or location 
of boundary on children’s accuracy on classification trials. 
Subsequent analyses were collapsed over these variables. 

 
 

 
 
Figure 2: Sampling distance from the category boundary in 
the two conditions. Dashed line indicates average sampling 

distance expected by a random-sampling strategy.  
Error bars show standard error. 

Information Sampling 
After learners have acquired some data in a category 
learning task, they would easily classify items that are far 
from the true category boundary, but are more uncertain 
about items that are near the boundary. Following the 
analyses in Markant & Gureckis (2013), we thus examined 
children’s sampling distances, i.e. the distance between the 

children’s selections and the true category boundary, as a 
general measure of uncertainty-driven information selection. 

As Figure 2 indicates, children in the Selection condition 
were sampling closer to the true category boundary over 
time. Using the children’s average sampling distance for 
each test block, we performed a 2x4 repeated measures 
analysis of variance (ANOVA) with Condition (Selection 
vs. Reception) as a between-subjects factor and Test Block 
(1–4) as a within-subjects factor. There were significant 
main effects of Condition, F(1, 62) = 15.2, p < .001, η2 = 
.197, and Test Block, F(3, 60) = 10.77, p < .001, η2 = .350. 
There was also a significant interaction between the two 
factors, F(3, 61) = 8.58, p < .001, η2 = .30. 

Planned comparisons showed that average sampling 
distance in the Selection condition was significantly smaller 
than expected by a random-sampling strategy by the second 
test block, t(31) = 2.34, p = .026, d = .413, while the average 
sampling distance of the randomly generated data points in 
the Reception condition never differed from chance, e.g. in 
the fourth test block, t(31) = .684, p = .50, d = .121.  

 
 

Figure 3: Classification accuracy in the Selection and 
Reception conditions. Error bars show standard error. 

Classification 
Using children’s average classification accuracy across the 
four blocks, we then performed a 2x4 repeated measures 
analysis of variance (ANOVA) with Condition (Selection 
vs. Reception) as a between-subjects factor and Test Block 
(1–4) as a within-subjects factor. There was only a main 
effect of Test Block, F(3, 60) = 14.5, p < .001, η2 = .42. No 
other main effects or interaction was found. 

Planned comparisons revealed that the overall 
classification accuracy for children in both the Selection (M 
= .935, SD = .064) and Reception conditions (M = .924, SD 
= .059) was significantly different from chance (0.689). For 
the Selection condition, t(31) = 21.8, p < 0.01, d = 3.85. For 
the Reception condition, t(31) = 22.7, p < 0.01, d = 4.01. 

Although children’s classification accuracy did increase 
steadily in both conditions, their classification accuracy 
diverged over time. By the final block, children in the 
Selection condition were significantly more likely to 
classify the worms correctly (M = .986, SD = .046) than 



children in the Reception condition (M = .954, SD = .064), 
t(62) = 2.24, p = .029, d = .574.  

Discussion 
The present study examined whether 7-year-old children 
had the capacity to engage in and benefit from selection 
learning. Using a category learning task, we demonstrate 
that young children can learn successfully under conditions 
of selection, that they can gather data in a systematic 
manner, and that selection learning has distinct advantages 
over reception learning. 

First, our results indicate that children can learn 
successfully when they are allowed to make decisions about 
what information they wish to gather. The overall 
classification accuracy in the Selection condition was very 
high, suggesting that children are perfectly capable of 
learning from the data they generate by themselves. Their 
performance was comparable to that of children in the 
Reception condition, the latter of which should not be 
surprising given previous research showing that children are 
proficient at learning categories using randomly-generated 
exemplars when the classification rule is based only on a 
single dimension (i.e. rule-based category structure) similar 
to that used in our experiment (Huang-Pollock, Maddox, & 
Karalunas, 2011; Minda, Desroches, & Church, 2008).  It 
should also be noted that the task may have been too easy 
for children, resulting in near-ceiling performance in both 
conditions. Ongoing work improves the current design by 
increasing the number of classification items and removing 
the “reminder houses.” 

Second, 7-year-olds are able to gather data in a systematic 
way. As our results show, children sampled closer to the 
true category boundary over time. This result suggests that 
the children’s information gathering was informed by 
uncertainty and previous feedback, leading them to sample 
items that were near the true category boundary. Such a 
strategy would allow children to avoid generating redundant 
information, and focus on collecting data that is expected to 
help them learn effectively and efficiently.  

Third, and most importantly, children showed better 
learning under conditions of selection as compared to 
reception over time. By the final block, the classification 
accuracy obtained by children in the Selection condition 
was reliably higher than that of children in the Reception 
condition. Given the extremely small amount of information 
observed by the children over four blocks (as compared to 
previous adult studies), we found this measure to be more 
revealing of children’s learning under different modes of 
information gathering than that of average classification 
accuracy, which unduly weighs children’s early guesses. 

Establishing these findings within a single task suggests 
that children benefit from selection learning over reception 
learning partly because they are able to gather data in a 
systematic, non-random fashion. Researchers have 
previously examined the systematicity and optimality of 
children’s exploration strategies, but few have shown that 
these strategies have consequences on children’s learning. 

The current study thus adds an important piece to the puzzle 
by demonstrating that when given the opportunity, children 
can gather data in a systematic manner, and this uncertainty-
driven data generation is associated with superior 
performance during category learning. 

One notable difference between the selection and the 
reception conditions is that the learners observed different 
data points.  Thus, to further establish the advantages of 
self-directed data generation, ongoing work in our lab 
examines how children perform in a “yoked” condition 
(Gureckis & Markant, 2012). In such a condition, each child 
will be presented with the same sequence of worms that was 
generated by another child in the Selection condition. If the 
learners in the Selection and the Yoked condition perform 
differently despite having observed the same data, this result 
would provide additional evidence that being able to gather 
data that systematically addresses one’s own regions of 
uncertainty is crucial for selection to result in more effective 
and more efficient learning (Markant & Gureckis, 2013). 

Our discussion above offers a cognitive explanation for 
the selection advantage. Children performed better under 
conditions of selection because they generated data that was 
informative for them. However, the present results cannot 
speak directly to other psychological processes that may 
also drive the advantage found for selection learning. A 
variety of different psychological factors have been posited 
to account for such an advantage: enhanced memory 
encoding (Metcalfe & Kornell, 2005); deeper processing of 
the problem structure (Sobel & Kushnir, 2006); attention 
and motivation (Corno & Mandinach, 1983; Kersh, 1962), 
etc. Given the design of our experiment in which children in 
both conditions were provided with visual reminders of the 
house that each worm lives in, we are inclined to believe 
that the advantage found for selection over reception 
learning cannot be attributed to enhanced encoding of the 
presented information. As for other psychological factors, 
we do not think that they run contrary to our arguments – 
after all, those processes could have certainly been recruited 
when children were deciding which items to learn about. 

Another important note is that even though we have 
demonstrated that children learn better in the Selection 
condition as compared to the Reception condition, it is 
highly unlikely that the children’s information gathering 
was normatively optimal. In this two-category learning task, 
the optimal strategy is to engage in a binary search, such 
that the learner should always sample the item that is in the 
middle of the region of uncertainty (e.g. the space between 
the worm that one is certain lives in the green house, and the 
worm that one is certain lives in the blue house). By using 
such a strategy, the learner’s error in estimating the category 
boundary should exponentially converge (Castro et al., 
2008). In our task, optimal learners need to sequentially 
sample at least 3 worms, but at most 4 worms, to discover 
the category boundary. However, most of the children in the 
Selection condition did not appear to have used such a 
strategy, as only 7 out of 32 children successfully classified 
all the worms in Test Block 2 (having sampled 4 worms). 



Thus, like adults (Castro et al. 2008), children were not able 
to take full advantage of being able to select their own data.    

Self-directed learning has been a hugely influential and 
long-standing debate in education. While educators have 
consistently encouraged their young students to engage in 
hypothesis testing and self-directed exploration in order to 
boost learning, there has been a relative dearth of empirical 
evidence supporting such a belief. Our results provide 
strong evidence that in a simple two-category learning task, 
children do perform better under conditions of selection, 
and this phenomenon stems from them being able to gather 
information in a systematic, non-random way. That being 
said, we believe that self-directed learning might not 
necessarily be beneficial at all developmental levels, or in 
all situations (Castro et al., 2008; Markant & Gureckis, 
2013). More research is thus necessary to plug these gaps 
before work in this field can properly guide educators.  
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